
Algebraic Data Types Done Differently

Joachim Breitner

3.6.2006

For a while I have been thinking: Isn’t there a way to get rid of the intermedi-
ate Maybe construct in a commen expression like fromMaybe default . lookup.

It seems that a way to do that would be to pass more information to the
Maybe-generating function: What to do with a Just-Value, and what to return
in case of Nothing.

This leads to a new definion of the Maybe data type as a function. Later I
discovered that this seems to work for any algebraic data type.

This is probably nothing new, but I am offline at the moment, so I can’t check.
This means that this might also be total rubbish. Enjoy.

Contents

1. Preparation 1

2. Implementation of our Maybe 2

3. Same with Bool 3

4. Other data types 4

5. And what is it good for? 4

A. Proofs of the Monad law 4

1. Preparation

Assuming we have a function f :: Maybe a that returns a Maybe containing a variable
of type a. Usually, we do not really care about this encapsulation, but we rather care to
handle two cases – one with data and one without – separately. If we want to get rid of
the Maybe, we obviously need to pass a default return value to the function. Therefore,
we have f :: a -> a. But that is not sufficient: We still want to be able to distinguish
between Nothing and Just default. So we move the processing of the Just value into the
function. Because the result type of that processing does not matter to f, the type becomes
f :: forall b. (a -> b) -> b -> b.

1

Is this equivalent to Prelude.Maybe-? We can check by trying to implement the various
functions.

2. Implementation of our Maybe

We first hide some functions from Prelude that we are going to redefine, and import some
standard modules. The forall construct is not standard Haskell98, so we tell ghc to not
be so picky.

{−# OPTIONSGHC −fglasgow−exts #−}
import Prelude hiding (Maybe, Bool, maybe, not)
import Control.Monad (MonadPlus, mzero, mplus)

Now let’s define the type. We could have used type instead, and omitted the M construc-
tor, but that would prevent us from declaring type class instansnces for our Maybe, so we
have to take the long road with newtype and a constructor.

newtype Maybe a = M (forall b. (a -> b) -> b -> b)

We also need replacements for the standard constructors Just and Maybe. These are
now mere functions, so we have to write them in lower case.
just just applies the given function to the stored value, ignoring the default. nothing

just returns the default value, ignoring the function.

just :: a -> Maybe a
just x = M (\f d -> f x)

nothing :: Maybe a
nothing = M (\f d -> d)

We also want to be able to retrieve a value from Maybe, so we implement the maybe
function as seen in the Prelude.

maybe d f (M a) = a f d

Because of the similarity between maybe and our definition of Maybe, some of the
following code could be written using this maybe function. I chose not to, to keep the
structure visible. On the other hand this means that any implementation of Maybe just
needs just, nothing and maybe, and all the other functions can be done based on that,
independently of the implementation.

Currently, our Maybes are just uncomprehensible functions. We want to make them
visible, so we define an instance for Show.

instance Show a => Show (Maybe a) where
show (M a) = a (("Just "++) . show) "Nothing"

Monads are alwasy interesting, so we implement that instance as well. I use the maybe
function once out of convenience, otherwise this might be an ugly let expression.

instance Monad Maybe where
return = just
fai l _ = nothing
(M a) >>= b = M (\f d -> a (maybe d f . b) d)

2

Is this really a monad? We can find out by proving the monad laws, but the proofs are
ugly. See the end of this document if you want to know.

Just for fun we can define other class instances.

instance MonadPlus Maybe where
mzero = nothing
mplus (M a) (M b) = M (\f d -> a f (b f d))

instance Functor Maybe where
fmap f’ (M a) = M (\f d -> a (f.f’) d)

A demonstration of how to implement a “regular” Maybe function here, see maybeToList:

maybeToList (M a) = a (:[]) []

3. Same with Bool

After having done this, I wonder: Can we also implement other data types this way? And
it seems we can. Let’s try Bool. We usually work with boolean values to later on decide
which of two possible values we want. So why not pass these values directly to our Bool
and skip the middle man? So we get:

newtype Bool = B (forall a. a -> a -> a)

Again, we implement the constructors as functions. Just for fun I’ll use point-free style
here, instead of lambda-notation. A true value will return the first argument, a false value
the second.

true :: Bool
true = B const

false :: Bool
false = B (flip const)

Some logical operations:

not (B a) = B (flip a)

(B a) && (B b) = B (\t f -> a (b t f) f)
(B a) || (B b) = B (\t f -> a t (b t f))

Usually a Bool ends up in an if expression. But the standard if requires, hardcodedly,
a Bool. If the if construct were a regular function, we could re-define that. But it is not,
so we create our own if’.

if ’ (B a) t f = a t f

It seems that if’ is to our Bool what maybe is to our maybe. Also, all implementations
of an boolean value would need to only provide true, false and some kind of if .

The instance to show these values is straight forward

3

instance Show Bool where
show (B a) = a "True" "False"

To make our Bools compareable, we need to implement Eq. Unfortnately, this hard-
codes the result type Prelude.Bool, so we are leaving our world here. We could define
our own Eq’ with (==) returning our Bool.

instance Eq Bool where
(B a) == (B b) = a (b True False) (b False True)

To combine our two types, we implement isJust and isNothing.

isJust (M a) = B (\t f -> a (const t) f)
isNothing = not.isJust

4. Other data types

It seems that all algebraic data types can be represented this way. There will be one
parameter per constructor which itself takes as many parameters as the constructor takes
arguments. So examples might be:

newtype Either a b = E (forall c. (a -> c) -> (b -> c) -> c)
newtype (,) a b = E (forall c. (a -> b -> c) -> c)

5. And what is it good for?

No idea. I was hoping for higher efficiency because there is no need to pack the data in a
Maybe or similar, but intuitively this implementation will be much more expensive because
of all the functions to pass around. I also expect functions whose result is needed more than
once to be run more often than necesary, although the compiler could optimize that away.
Maybe.

A. Proofs of the Monad law

Sorry for being lazy and not commenting every step. And yes, they are ugly

unM (M a) = a −− shortcut
unM . M == \x -> unM (M x) == \x -> x == id −− properties
M . unM == id :: Maybe a -> Maybe a

return a >>= k
== just a >>= k −− def. return
== M (\f d -> f a) >>= k −− def. just
== M (\f d -> (\f’ d’ -> f a) (maybe d f . b) d) −− def. bind
== M (\f d -> (maybe d f . b) a) −− apply lambda
== M (\f d -> maybe d f (b a)) −− def. (.)
== M (\f d -> maybe d f (M (unM (b a)))) −− shortcut

4

== M (\f d -> unM (b a) f d) −− def. maybe
== M (unM (b a)) −− eta reduction (?)
== b a −− shortcut

(M m) >>= return
== (M m) >>= just
== (M m) >>= (\a -> just a))
== (M m) >>= (\a -> M (\f d -> f a))
== M (\f d -> m (maybe d f . (\a -> M (\f’ d’ -> f’ a)) d))
== M (\f d -> m (\a -> maybe b f (M (\f’ d’ -> f’ a)) d))
== M (\f d -> m (\a -> (\f’ d’ -> f’ a) f d) d))
== M (\f d -> m (\a -> f a) d)
== M (\f d -> m f d)
== M m

(M m) >>= (\x -> k x >>= h)
== M (\f d -> m (maybe d f . (\x -> k x >>= h)) d)
== M (\f d -> m (\a -> (maybe d f . (\x -> k x >>= h)) a) d)
== M (\f d -> m (\a -> (maybe d f ((\x -> k x >>= h) a))) d)
== M (\f d -> m (\a -> (maybe d f (k a >>= h))) d)
== M (\f d -> m (\a -> (maybe d f (M (unM (k a >>= h))))) d)
== M (\f d -> m (\a -> (unM (k a >>= h)) f d) d)
== M (\f d -> m (\a -> (let M k’ = (k a >>= h) in unM (M k’)) f d) d)
== M (\f d -> m (\a -> (let M k’ = (k a >>= h) in k’) f d) d)
== M (\f d -> m (\a -> (let M k’ = M (\f’ d’ -> unM (k a) (maybe d’ f’ . h)) in k’) f d) d)
== M (\f d -> m (\a -> (\f’ d’ -> unM (k a) (maybe d’ f’ . h) d’) f d) d)
== M (\f d -> m (\a -> unM (k a) (maybe d f . h) d) d)
== M (\f d -> m (\a -> unM (k a) (maybe d f . h) d) d)
== M (\f d -> m (\a -> maybe d (maybe d f . h) (M (unM (k a)))) d)
== M (\f d -> m (\a -> maybe d (maybe d f . h) (k a)) d)
== M (\f d -> m (\a -> (maybe d (maybe d f . h) . k) a) d)
== M (\f d -> m (maybe d (maybe d f . h) . k) d)
== M (\f d -> (\f’ d’ -> m (maybe d’ f’ . k) d’) (maybe d f . h) d)
== M (\f d -> let M mk’ = M (\f’ d’ -> m (maybe d’ f’ . k) d’) in mk’ (maybe d f . h) d)
== M (\f d -> let M mk’ = (M m >>= k) in mk’ (maybe d f . h) d)
== M (\f d -> let M mk’ = (M m >>= k) in unM (M mk’) (maybe d f . h) d)
== M (\f d -> unM ((M m) >>= k) (maybe d f . h) d)
== ((M m) >>= k) >>= (M h)

5

	Preparation
	Implementation of our -Maybe-
	Same with Bool
	Other data types
	And what is it good for?
	Proofs of the Monad law

