System FC, as implemented in GHC!
23 April 2015

1 Introduction

This document presents the typing system of System FC, very closely to how it is implemented in GHC. Care
is taken to include only those checks that are actually written in the GHC code. It should be maintained
along with any changes to this type system.

Who will use this? Any implementer of GHC who wants to understand more about the type system can look
here to see the relationships among constructors and the different types used in the implementation of the
type system. Note that the type system here is quite different from that of Haskell—these are the details of
the internal language, only.

At the end of this document is a hypothetical operational semantics for GHC. It is hypothetical because
GHC does not strictly implement a concrete operational semantics anywhere in its code. While all the
typing rules can be traced back to lines of real code, the operational semantics do not, in general, have as
clear a provenance.

There are a number of details elided from this presentation. The goal of the formalism is to aid in reasoning
about type safety, and checks that do not work toward this goal were omitted. For example, various scoping
checks (other than basic context inclusion) appear in the GHC code but not here.

2 Grammar

2.1 Metavariables

We will use the following metavariables:

x Term-level variable names

a, B Type-level variable names

N Type-level constructor names

K Term-level data constructor names
M Axiom rule names

i, 7, k, a, b, ¢ Indices to be used in lists

2.2 Literals

Literals do not play a major role, so we leave them abstract:
lit = Literals, basicTypes/Literal.lhs:Literal

We also leave abstract the function basicTypes/Literal.lhs:1iteralType and the judgment coreSyn/CoreLint.lhs:1intTyLit
(written I' Ryiie lit :).

2.3 Variables

GHC uses the same datatype to represent term-level variables and type-level variables:

z n= Term or type name

I This document was originally prepared by Richard Eisenberg (eir@cis.upenn.edu), but it should be maintained by anyone
who edits the functions or data structures mentioned in this file. Please feel free to contact Richard for more information.

1

| « Type-level name

| =z Term-level name
n, m n= Variable names, basicTypes/Var.lhs:Var
| 27 Name, labeled with type/kind

2.4 Expressions

The datatype that represents expressions:

e, u n= Expressions, coreSyn/CoreSyn.lhs:Expr
| n Variable
| it Literal
| ee Application
| An.e Abstraction
| let bindingin e Variable binding
| case eas nreturnr ofﬁtil Pattern match
| ey Cast
| €{tick} Internal note
| 7 Type
| Coercion

There are a few key invariants about expressions:

e The right-hand sides of all top-level and recursive lets must be of lifted type.

e The right-hand side of a non-recursive let and the argument of an application may be of unlifted type,
but only if the expression is ok-for-speculation. See #let_app_invariant# in coreSyn/CoreSyn.lhs.

e We allow a non-recursive let for bind a type variable.
e The . case for a case must come first.
e The list of case alternatives must be exhaustive.

e Types and coercions can only appear on the right-hand-side of an application.

Bindings for let statements:

n=e Non-recursive binding

binding BES Let-bindings, coreSyn/CoreSyn.lhs:Bind
|
\ Recursive binding

Case alternatives:

alt = Case alternative, coreSyn/CoreSyn.lhs:Alt
| Kn;* — e Constructor applied to fresh names

Constructors as used in patterns:

K n= Constructors used in patterns, coreSyn/CoreSyn.lhs:A1tCon
| K Data constructor
| it Literal (such as an integer or character)
| - Wildcard

Notes that can be inserted into the AST. We leave these abstract:
tick n= Internal notes, coreSyn/CoreSyn.lhs:Tickish

A program is just a list of bindings:

program BES _ A System FC program, coreSyn/CoreSyn.lhs:CoreProgram

| binding; List of bindings
2.5 Types

T, Ky, O = Types/kinds, types/TypeRep.lhs:Type
| n Variable
| T2 Application
| T7;" Application of type constructor
| T — Ty Function
| Vn.or Polymorphism
| it Type-level literal

There are some invariants on types:

e The type 71 in the form 7 75 must not be a type constructor 7. It should be another application or a
type variable.

e The form T'7; % (TyConApp) does not need to be saturated.

e A saturated application of (—) 71 72 should be represented as 71 — 72. This is a different point in the
grammar, not just pretty-printing. The constructor for a saturated (—) is FunTy.

e A type-level literal is represented in GHC with a different datatype than a term-level literal, but we
are ignoring this distinction here.

2.6 Coercions

v = Coercions, types/Coercion.lhs:Coercion
| (), Reflexivity
| I;Wi Type constructor application
| Y1 Y2 Application
| Vn.oy Polymorphism
| n Variable
| C ind7;’ Axiom application
| T1 $, T2 Universal coercion
| symy Symmetry
| Y1372 Transitivity
| uT Y Axiom-rule application (for type-nats)
| nth;y Projection (0-indexed)
| LorR~y Left /right projection
| A7 Type application
| sub~y Sub-role — convert nominal to representational

Invariants on coercions:
e (11 72), is used; never (11), (T2)y-
o If (T) PRt applied to some coercions, at least one of which is not reflexive, use 7, 7; ¢, never (T) P2

e The T in Taﬁi is never a type synonym, though it could be a type function.

Roles label what equality relation a coercion is a witness of. Nominal equality means that two types are
identical (have the same name); representational equality means that two types have the same representation
(introduced by newtypes); and phantom equality includes all types. See http://ghc.haskell.org/trac/
ghc/wiki/Roles for more background.

p n= Roles, types/CoAxiom.lhs:Role
| N Nominal
| R Representational
| P Phantom

Is it a left projection or a right projection?

LorR = left or right deconstructor, types/Coercion.lhs:Left0rRight
| left Left projection
| right Right projection
Axioms:
C = Axioms, types/TyCon.lhs:CoAxiom
| T, axBranch; ' Axiom
axBranch, b = Axiom branches, types/TyCon.lhs:CoAxBranch
| Vag,' (T ~ o) Axiom branch

The definition for azBranch above does not include the list of incompatible branches (field cab_incomps of
CoAxBranch), as that would unduly clutter this presentation. Instead, as the list of incompatible branches
can be computed at any time, it is checked for in the judgment no_conflict. See Section 4.16.

Axiom rules, produced by the type-nats solver:
I = CoAxiomRules, types/CoAxiom.lhs:CoAxiomRule

| M 573,01 Named rule, with parameter info

An axiom rule p = M; 53 pry is an axiom name M, with a type arity ¢, a list of roles ;Tjj for its coercion
parameters, and an output role p’. The definition within GHC also includes a field named coaxrProves which
computes the output coercion from a list of types and a list of coercions. This is elided in this presentation,
as we simply identify axiom rules by their names M. See also typecheck/TcTypeNats.lhs:mkBinAxiom and
typecheck/TcTypeNats.lhs:mkAxioml.

In Co_Un1vCo, function compatibleUnBoxedTys stands for following checks:

e both types are unboxed;

types should have same size;

both types should be either integral or floating;

coercion between vector types are not allowed;

unboxed tuples should have same length and each element should be coercible to appropriate element
of the target tuple;

For function implementation see coreSyn/CoreLint.lhs:checkTypes. For futher discussion see https://ghc.
haskell.org/trac/ghc/wiki/BadUnsafeCoercions.

2.7 Type constructors

Type constructors in GHC contain lots of information. We leave most of it out for this formalism:

T = Type constructors, types/TyCon.lhs:TyCon
| (=) Arrow
| N* Named tycon: algebraic, tuples, and synonyms
| H Primitive tycon
| 'K Promoted data constructor
| 'T Promoted type constructor

We include some representative primitive type constructors. There are many more in prelude/TysPrim.lhs.

H Primitive type constructors, prelude/TysPrim.lhs:

| Inty Unboxed Int (intPrimTyCon)
| (~%) Unboxed equality (eqPrimTyCon)
| (~Rr#) Unboxed representational equality (eqReprPrimTyCon)
| O Sort of kinds (superKindTyCon)
| = Kind of lifted types (1iftedTypeKindTyCon)
| # Kind of unlifted types (unliftedTypeKindTyCon)
| OpenKind Either * or # (openTypeKindTyCon)
| Constraint Constraint (constraintTyCon)
3 Contexts

The functions in coreSyn/CoreLint.lhs use the LintM monad. This monad contains a context with a set of
bound variables I'. The formalism treats I' as an ordered list, but GHC uses a set as its representation.

r = List of bindings, coreSyn/CoreLint.lhs:LintM
| n Single binding
| FTZ Context concatenation

We assume the Barendregt variable convention that all new variables are fresh in the context. In the
implementation, of course, some work is done to guarantee this freshness. In particular, adding a new
type variable to the context sometimes requires creating a new, fresh variable name and then applying a
substitution. We elide these details in this formalism, but see types/Type.lhs:substTyVarBndr for details.

4 Typing judgments

The following functions are used from GHC. Their names are descriptive, and they are not formalized
here: types/TyCon.lhs:tyConKind, types/TyCon.lhs:tyConArity, basicTypes/DataCon.lhs:dataConTyCon,
types/TyCon.lhs:isNewTyCon, basicTypes/DataCon.lhs:dataConRepType.

4.1 Program consistency

Check the entire bindings list in a context including the whole list. We extract the actual variables (with
their types/kinds) from the bindings, check for duplicates, and then check each binding.

Forog Program | Program typing, coreSyn/CoreLint.lhs:1intCoreBindings
I' = vars_of bmdingii

no_duplicates binding; ’
T Foing binding; '

: PrROG_COREBINDINGS
T 1
Forog binding;

Here is the definition of vars_of , taken from coreSyn/CoreSyn.lhs:binders0f:

varsof n = e =n
vars.of recm; = ¢,° =m;"

4.2 Binding consistency

T hping binding | Binding typing, coreSyn/CoreLint.lhs:1int bind

I' Fbing m €

BINDING_NONREC
I'hingn=c¢

= e
bind 1li < €;
e ¢ ‘ BINDING_REC

I bying recm; = ¢;°

Single binding typing, coreSyn/CoreLint.lhs:1intSingleBinding

I'hkme:r
'k 27 ok
;' = fu(7)
m; € F’L

————— SBINDING_SINGLEBINDING
I Kpind 27 <€

In the GHC source, this function contains a number of other checks, such as for strictness and exportability.
See the source code for further information.

4.3 Expression typing

Expression typing, coreSyn/CoreLint.lhs:1intCoreExpr
z7 el
= (Fyst. T =7)

TM_VAR
I'kmaz™:7
7 = literal Type lit
TMm_LiT
Thkmlit: 7
I'hkme:o
ITkoy:o~gT
2 R TM_CAST

I'kme>py:7

I'kme:T

'k C{tick} * T Ta-Tiex
I'=T,a"
'k k ok
I Kubst @™ — o ok
IMbkmela®—o]:T
TM_LETTYKI

I'kmleta® =cine: 71

I Fepind 27 < u
'k o:k
Iz hkme:r

TM_LETNONREC
I'kmletze =wuine: 7

I = inits (%7)
T, T ky 0 : Fg
no_duplicates z;*
I"=T,%%"

T Fepind 2% < Ui
IMme:T

.71'0
I'km letrec 2z, = u; ine: 7

TM_LETREC

I'kn e - Var.r

I'k ki o ok
subst & 7 TM_APPTYPE

Tk e1o: Tl — o]

(3T st. ea=1)
F}_tm €1 :7T1 — T2

I'kme: 7
tm 72 71 TM_APPEXPR

Imeiex:m

'y 7:k
I'Ne"hme:o

TMm_LAMID
IF'hn Az7.e:7— 0
I"=T,a"
'k k ok
IMVkme:r
TM_LAMTY

I'km AaF.e: Var.T

I'kme:o
'y o:ky
Iy 7 kKo

T, 29,0 by alt; : T’

TM_CASE

— 1
I'ky casecas zreturntofalt; : 7

TM_CoOERCIONNOM

FFCO’YZTINSTQ

L'y : (VR) KTL T2

TM_COERCIONREP

e Some explication of TM_LETREC is helpful: The idea behind the second premise (I',I", Ky o} : k; l)
is that we wish to check each substituted type o} in a context containing all the types that come
before it in the list of bindings. The I'; are contexts containing the names and kinds of all type
variables (and term variables, for that matter) up to the ith binding. This logic is extracted from
coreSyn/CoreLint.lhs:1intAndScopelds.

e There is one more case for I' i, e : 7, for type expressions. This is included in the GHC code but is
elided here because the case is never used in practice. Type expressions can only appear in arguments
to functions, and these are handled in TM_APPTYPE.

e The GHC source code checks all arguments in an application expression all at once using coreSyn/CoreSyn.lhs:collectAr
and coreSyn/CoreLint.lhs:1intCoreArgs. The operation has been unfolded for presentation here.

e If a tick contains breakpoints, the GHC source performs additional (scoping) checks.

e The rule for case statements also checks to make sure that the alternatives in the case are well-formed
with respect to the invariants listed above. These invariants do not affect the type or evaluation of the
expression, so the check is omitted here.

e The GHC source code for TM_VAR contains checks for a dead id and for one-tuples. These checks are
omitted here.

4.4 Kinding

Kinding, coreSyn/CoreLint.lhs:1intType

2" el

—— Tvy_TyVAarTYy
Ik 2f:k

Fl—tyT13/€1
'Ry 721 Ko

'k : :
o (721 #02) i 11 > 18 TY_ApPPTY

'y mm:ik

Fl—tyT1Zl€1
Fl—tyTQZKJQ
', ki — ko K

Ty_FunTY
'kymi =1k

= (isUnLiftedTyCon T) V length 7; * = tyConArity T
T bapp (7i : 1) 2 tyConKind T ~
I'hy Tk

Ty_TyCoNAPP

F"klﬁ1 ok
[, 2M gy 7t ko

Ty _FORALLTY
'Ry VzR1.7 2 ko

r l_tylit lit: Kk

Ty_LitTYy
Dhylit: s T

4.5 Kind validity

Kind validity, coreSyn/CoreLint.lhs:1intKind

'k k:0

—————— KB
' Kk ok ox

4.6 Coercion typing

In the coercion typing judgment, the # marks are left off the equality operators to reduce clutter. This is
not actually inconsistent, because the GHC function that implements this check, 1lintCoercion, actually
returns four separate values (the kind, the two types, and the role), not a type with head (~4) or (~ry).
Note that the difference between these two forms of equality is interpreted in the rules Co_CoVARCONOM
and Co_COVARCOREPR.

Phoy:imi~ym ‘ Coercion typing, coreSyn/CoreLint.lhs:1intCoercion

Pky7:k
Dho (1), t7~8T

K
p p

CoO_REFL

Fkom o~
I'oy2:02~p2 72
Ik k1 > kot K
Co_TyCoNnArPCOFUNTY
ko (=) mi72 0 (01 = 02) ~5(T1 — T2)

T # () |
pi " = take(length7; ", tyConRolesX p T)

K2
. K
Pheovitoing 7

I Bpp (0 : m-)z : tyConKind T ~ & o TYCONAPPC
- - - O_1YCONAPPCLO
Iho Lyi*: To' ~5 TT"

homiior~ptm
[72t 02~ T2
'k 09 :Ko): Kl ~ K
wop (02 : 2 : K1 Co_AppCoO

[Feo v172 1 (01 02) ~5(71 72)

. K

Fhkom:or~p'm
K

I' '7230'2Np2 T2

'k 09 :Kg): K K
spp (72 1 12) 1;» Co_ApPPCOPHANTOM
Ikomiye: (01 02) Np(Tl 72)

F"Rfﬂ ok

F72“1h0750N527 Co_ForALLC
T heo V2t oy : (Val.o) ~i2(Varg) 0 ORALLEO

z(TNEﬁ el
Co_CoVarCoBox

-0
T 27 #T)iTNN T

Jo~ED) €T

Kk # U
7 — Co_CoVArRCoNoM
Il 2 #T):awﬁr

Jonie) e T

k#£0
Co_CoVArRCOREPR

NK’
[k 20 R i g ntir

thT1II€1

'y o Ko
p <PV =(k <: OpenKind) V = (ke <: OpenKind) V compatibleUnBoxed Tys 71 72
Co_UnivCo

Do 71 b, 7ot T ~p2 T

10

Fl—co’ytTlN';Tg

I'o symy : o~ 1

p

Moy imi~p T
Moo ima~yTs

Phori§y2:m~pTs

Fheoy: (T57) ~5(T77)

lengtho; 7 = length ;7

i < lengtha; 7

I'kyoi:n

P = (tyConRolesX p T)[i]
r l_co nth,-’y oy Ng, Ti

T ko v 1 (0102) ~f (11 72)
I'kyoi1:k

'k lefty : o1~

T beo v (0102) ~f (11 72)
Ikyoo:k

I' ko righty : o2 ~§ T2

'y :Vm.o N; Vn.1
r l_ty T0 - Ko

m = zM

Ko <! K1

[ko v 7ot alm = 7o) ~57[n = 7o

C = T, axBranchy y

14
0 < ind < length axBranchy, y

Vgt (5157 ~ 1) = (axBranchy, ")|ind]

T bo it 0~y 7! ‘

subst; . = inits ([n; — o/ ')

KL <t k<>’ubstl-(fi,-)z .

no_conflict(C, 725’ ,ind, ind — 1)
=J

31
025 =01 [n; = 0]

/'L
To =Ty [> 7))
'y m:k

[k Cind¥; ' : Togj? T

11

Co_SymCo

Co_TransCo

Co_NTHCO

Co_LRCOLEFT

Co_LRCORIGHT

Co_InsTCoO

Co_AxioMINsSTCO

Thoy:o~g
T 9NT (o_SusCo

I'zosuby:o~gT

A)
T l_ty Ti + R

J
K:,
. . J !
L'k y) 05 m~p) 0}

Just ({,74) = coaxrProves u7; * (0, a.;.)]

I'ky 1 Ko
I'ky 1 Ko
T RN Co_Ax1ioMRULECO
o Wi V57 1T To

In Co_Ax10MINSTCO, the use of inits creates substitutions from the first ¢ mappings in [n; — o;] ', This
has the effect of folding the substitution over the kinds for kind-checking.

See Section 4.15 for more information about tyConRolesX, and see Section 2.6 for more information about
coaxrProves.

4.7 Name consistency

There are two very similar checks for names, one declared as a local function:
'k nok| Name consistency check, coreSyn/CoreLint.lhs:1intSingleBinding#lintBinder

'y 7:k

TR NAMET
T 27 ok ME-D

——— NAME_TYVA
TF o ok ME_TYVAR

Binding consistency, coreSyn/CoreLint.lhs:1intBinder

'y 7:8

—————— BINDING_ID
I' bpng 27 ok

I' i K ok

————— BINDING_TYVAR
T bpng @ ok

12

4.8 Substitution consistency

‘F Fubst M — T ok‘ Substitution consistency, coreSyn/CoreLint.lhs:checkTyKind

I' k k ok

SuBsT_KIND
I beubst 22 — & ok

Iil#D
Mgy 71 ko

Ko <! K1
SUBST_TYPE

I' Kubst 271 — 7 ok

4.9 Case alternative consistency

T;0 bk alt : 7| Case alternative consistency, coreSyn/CoreLint.lhs:1intCoreAlt

I'kme:r

ALT_DEFAULT
iobkwe —e:T

o = literal Typellit
I'hkme:T

- Arr_LiTALT
Tiohkrlit > e: 7
T = dataConTyCon K
- (isNewTyCon T')
71 = dataConRepType K
m=n{0;" }
I I_bnd n; OkZ
I'="T,mn"
I’ Baitond T 2 72~ TT57
IVhme:T

ALT_DATAALT

F;Tﬁjjh|thi —e:T

4.10 Telescope substitution

Telescope substitution, types/Type.lhs:applyTys

ArPLYTYS_EMPTY

=0

13

T =r{7i"}
"' =7'[n— o]

: ApPPLYTYs_ Ty
7 = (VYn.7){o,5;"}

4.11 Case alternative binding consistency

‘ I" Ritbnd vars : 71 ~> 7o ‘ Case alternative binding consistency, coreSyn/CoreLint.lhs:1intAltBinders

ALTBINDERS_EMPTY

I'Hitbnd -7~ 7

T Fubst 87— o ok
T Fa n 721 : K = aff] ~>

tond :1[6 ,a e ALTBINDERS_TYVAR
[Bitng @, 7" 2 (VB'.7) ~ 0

F"ahbdﬁi:TQWJ
= ALTBINDERS_ID
I Ritond 27, 7" 2 (71 = T2) ~ 0

4.12 Arrow kinding

‘I‘ F, k= ko Ii‘ Arrow kinding, coreSyn/CoreLint.lhs:1intArrow

ARROW_BoOXx

' 0O — ke O

k1 € {*,#,Constraint }

Ky € {x Constraint
L3, } ARROW_KIND
T F_> K1 — Ko @ %

4.13 Type application kinding

Type application kinding, coreSyn/CoreLint.lhs:1int_app

T bpp (04 1 Ki) K1~ Ko

AprP_EMPTY
Ihpp -t 6~ K

14

k<! K1

'k Ry ' ‘K K
po (7) iz APP_FUNTY

I bpp (7 1K), (15 : m-)i i (K1 = Ka) ~ K/

K <: K1

I' Bpp (75 : m)z DKozt = 7] e R

- Aprp_FORALLTY
T hpp (T 1K), (Ti 2 k) = (V2R ke) ~ K

4.14 Sub-kinding

Sub-kinding, types/Kind.lhs:isSubKind

SUBKIND_REFL

K< K

————— SUBKIND_UNLIFTEDTYPEKIND
<: OpenKind

————— SUBKIND_LIFTEDTYPEKIND
x <: OpenKind

- - SUBKIND_CONSTRAINT
Constraint <: OpenKind

—————— SUBKIND_CONSTRAINTLIFTED
Constraint <: *

———— SuBKIND_LIFTEDCONSTRAINT
* <: Constraint

4.15 Roles

During type-checking, role inference is carried out, assigning roles to the arguments of every type constructor.
The function tyConRoles extracts these roles. Also used in other judgments is tyConRolesX, which is the same
as tyConRoles, but with an arbitrary number of N at the end, to account for potential oversaturation.

The checks encoded in the following judgments are run from typecheck/TcTyClsDecls.lhs:checkValidTyCon
when -dcore-1lint is set.

validRoles T'| Type constructor role validity, typecheck/TcTyClsDecls.lhs:checkValidRoles

15

KZ = tyConDataCons T

p;? = tyConRoles T'

validDcRoles 777 K;
validRoles T

CvR_DATACONS

validDcRolesp, * K| Data constructor role validity, typecheck/TcTyClsDecls.lhs:check_dc_roles

Viig @ Vg ? 7o ¢ — T g @ = dataConRepType K

B b
Mg : pa®ymp : N ke 70 0 R
validDcRolesp, ¢ K

CDR_ARGS

In the following judgment, the role p is an input, not an output. The metavariable €2 denotes a role context,
as shown here:

Q

Mapping from type variables to roles
| Mg © p7 " List of bindings

Qbkw 7:p| Type role validity, typecheck/TcTyClsDecls.lhs:check_ty_roles

Q(n) = of
P<p

————— CTtrR_TYVARTY
Qb n: p

7" = tyConRoles T _
pi € (NR} = Qkuripi
Qbey T777 iR

CTR_TYCONAPPREP

i

Qbke N

—————— CTr_-TYyCoNAPPNOM
Qb TT":N

Ql_ctrTl:p
Qb 72N

— = Ctr_APPTY
Qe mim:ip

Qe miip

Q by T2
w72 P CTrR_FUNTY

Qb —T2:p

Qn:Nbky7:p

CTR_FORALLTY
Qbky Vnr:p

16

——— Ctr_L1TTY
Q h:tr lit : P

These judgments depend on a sub-role relation:

Sub-role relation, types/Coercion.lhs:1tRole

RLT_NOMINAL

N<p
RLT_PHANTOM
p<P
— RLT_REFL
PP

4.16 Branched axiom conflict checking

The following judgment is used within Co_AX10MINSTCO to make sure that a type family application cannot
unify with any previous branch in the axiom. The actual code scans through only those branches that are
flagged as incompatible. These branches are stored directly in the azBranch. However, it is cleaner in this

presentation to simply check for compatibility here.

no_conflict(C, @57 , indy, inds)

Branched axiom conflict checking, types/OptCoercion.lhs:checkAxInstCo
and types/FamlInstEnv.lhs:compatibleBranches

- NoCONFLICT_-NOBRANCH

no_conflict(C, ;" , ind, —1)

C = 1, axBranchy, F

VT, (ﬁ] ~ 7') = (azBranchy g)[inda]
apart (057, 757)

no_conflict(C, 757 , indy, indy — 1)

no_conflict(C, 757 , indy, inds)

C = T, axBranchy, i
VT, Z (7;7 ~» o) = (azBranchy g)[ind,]

Pi
—i = _— &
Vg “(T]{J ~ ¢') = (axBranchy,)[inds]
apart (757, 7))
no_conflict(C, 757 , indy, inds — 1)

no_conflict(C, 757 , indy, inds)

17

NOCONFLICT_INCOMPAT

NoCoNFLICT_COMPATAPART

C = T, axBranch, ¥

VnT,mZ: (ﬁj ~ o) = ((azBranchy, g)[ind;)

Vngy

i

(77 ~~ 0') = (azBranch; ")[inds)]
unify(?jj , 7'71) = subst
subst(a) = subst(o’)

no_conflict(C, ;7 , indy, indy)

NoOCONFLICT_COMPATCOINCIDENT

The judgment apart checks to see whether two lists of types are surely apart. apart(7;*, ;"), where 7;
is a list of types and ;' is a list of type patterns (as in a type family equation), first flattens the 7;
using types/FamlInstEnv.lhs:flattenTys and then checks to see if types/Unify.lhs:tcUnifyTysFG returns
SurelyApart. Flattening takes all type family applications and replaces them with fresh variables, taking
care to map identical type family applications to the same fresh variable.

The algorithm unify is implemented in types/Unify.lhs:tcUnifyTys. It performs a standard unification,
returning a substitution upon success.

5 Operational semantics

5.1 Disclaimer

GHC does not implement an operational semantics in any concrete form. Most of the rules below are implied
by algorithms in, for example, the simplifier and optimizer. Yet, there is no one place in GHC that states
these rules, analogously to CoreLint.lhs. Nevertheless, these rules are included in this document to help
the reader understand System FC.

5.2 The context X

We use a context X to keep track of the values of variables in a (mutually) recursive group. Its definition is

as follows:
Y o= | X [ne e

The presence of the context X is solely to deal with recursion. If your use of FC does not require modeling
recursion, you will not need to track .

5.3 Operational semantics rules

Yhpe—¢ Single step semantics
Y(n)=e
S_VAR
Yhpn —e
Y hep €1 — €]
o 1 ! S_App

Yhperea —> ef e

18

S_BETA

Y hop (An.e1) e — €1 [n — eg)

Yo = sym (nthg)
7 = nthy vy
—drst. e =7
— 3y st e =7

Y hp (An.er)>y) e2 — (An.er > y1) (e2>70)

S_PUsH

S_TPusH

Y (An.e)py) 7 — (An.(e>yn)) T

~o = nthy (nthg~)
~v1 = sym (nths (nthg 7))
Y2 = nthy y

Yhep (An.e)>y)y — (An.e>2) (70§79 §71)

S_CPuUsH

S_TRANS

Yhp(ebpm)bye — e (71372)

Yhpe— ¢
S_CasT

Yhpeby— e >y

Yhpe—¢€
S_TICK

Y Fop efticky — € {tick}

Yhpe—¢

— 3 S_CASE
Y kp case easnreturnrtof alt; — case e’ asnreturntof alt;

b
alt; = K o™ Tl = u

b
W =uln— e][ay™ — oy [T — o]

— 7 S_MATCHDATA
Y Kp case K 7/, opte.asnreturntofalt; — o

alt; =lit = u

— S_MATCHLIT
Y kp caselitas nreturntof alt, — u[n — lit]

alty =_ —u

no other case matches
- S_MATCHDEFAULT
Y kp case casnreturnrtofalt;, — un — €

19

T7,%~%5 T7," = coercionKind

716 -
VagRe “ By F1.¢ — Tag " = dataConRepType K
C

el = e. > (71 c[ag " — nth, 7](1 [ﬁb“é = (op)n)) S CASEPUSH

—
Y p case (K755 e:¢) >yas nreturnp of alt; —

—a__ g —c —i
case K 77" 53 ¢/ " as nreturn, of alt;

- S_LETNONREC
Yhopletn =e ine; — ey [n— e

3, [ng— ei]i Fop 4 —> o
S_LETREC

Y hpletrecm;, = ¢ 'inu — letrecn; = ¢ *in v’

S_LETRECAPP

Yhop (letrecn; =¢; ‘inu) ¢/ — letrecn; = ¢; 'in(ue’)

— — S_LETRECCAST
Y hkp (letrecm, =¢"inu) >y — letrecn; = ¢ " in (u>7)

S_LETRECCASE

Y kp case (letrecn; = ¢; “in u) as no return 7 ofﬁtjj —

n —J
let recn; = ¢; ' in (case uas ng returnrof alt;”)

S_LETRECFLAT

. ——J . [v B 2
El—opletrecm:ei’ln(letrecnj’-:e]’- 1nu)—>letrecni:eﬂ;nj’-:ej’- inu

fo(u)Nm; b = -

— S_LETRECRETURN
Y hpletrecn; =¢;"inu — u

5.4 Notes

e The S_LETREC rules implement recursion. S_LETREC adds to the context ¥ bindings for all of the
mutually recursive equations. Then, after perhaps many steps, when the body of the let rec contains
no variables that are bound in the let rec, the context is popped in S_.LETRECRETURN. The other
S_LETRECXXX rules are there to prevent reduction from getting stuck.

e In the case rules, a constructor K is written taking three lists of arguments: two lists of types and a
list of terms. The types passed in are the universally and, respectively, existentially quantified type
variables to the constructor. The terms are the regular term arguments stored in an algebraic datatype.
Coercions (say, in a GADT) are considered term arguments.

20

e The rule S_.CASEPUSH is the most complex rule.

The logic in this rule is implemented in coreSyn/CoreSubst.lhs:exprIsConApp maybe.

The coercionKind function (types/Coercion.lhs:coercionKind) extracts the two types (and their
kind) from a coercion. It does not require a typing context, as it does not check the coercion, just
extracts its types.

The dataConRepType function (basicTypes/DataCon.lhs:dataConRepType) extracts the full type
of a data constructor. Following the notation for constructor expressions, the parameters to the
constructor are broken into three groups: universally quantified types, existentially quantified
types, and terms.

The substitutions in the last premise to the rule are unusual: they replace type variables with co-
ercions. This substitution is called lifting and is implemented in types/Coercion.lhs:1iftCoSubst.
The notation is essentially a pun on the fact that types and coercions have such similar structure.

Note that the types 73— the existentially quantified types—do not change during this step.

21

