
Lazy Evaluation:
From natural semantics

to a machine-checked compiler transformation

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation
von

Joachim Breitner

aus Herrenberg

Tag der mündlichen Prüfung: 25. April 2016

Erster Gutachter: Prof. Dr.-Ing. Gregor Snelting

Zweiter Gutachter: Prof. Tobias Nipkow, Ph.D.

Das vorliegende Dokument, erstellt am 29. Juni 2016,
unterscheidet sich von der genehmigten Version duch die auf

http://www.joachim-breitner.de/thesis/#errata
aufgeführten Korrekturen.

http://www.joachim-breitner.de/thesis/#errata


ii

This document is licensed under the Creative Commons Attribution 3.0
DE License (CC BY 3.0 DE):
http://creativecommons.org/licenses/by/3.0/de/

http://creativecommons.org/licenses/by/3.0/de/


Contents
1 Introduction 1

1.1 Notation and conventions . . . . . . . . . . . . . . . . . . . 3
1.2 Reproducibility and artefacts . . . . . . . . . . . . . . . . . 6
1.3 Lazy evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 The GHC Haskell compiler . . . . . . . . . . . . . . . . . . 9

1.4.1 GHC Core . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.2 Rewrite rules and list fusion . . . . . . . . . . . . . . 12
1.4.3 Evaluation and function arities . . . . . . . . . . . . 16

1.5 Arities and eta-expansion . . . . . . . . . . . . . . . . . . . 17
1.6 Nominal logic . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6.1 Permutation sets . . . . . . . . . . . . . . . . . . . . 20
1.6.2 Support and freshness . . . . . . . . . . . . . . . . . 21
1.6.3 Abstractions . . . . . . . . . . . . . . . . . . . . . . . 22
1.6.4 Strong induction rules . . . . . . . . . . . . . . . . . 23
1.6.5 Equivariance . . . . . . . . . . . . . . . . . . . . . . 24

1.7 Isabelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.7.1 The prettiness of Isabelle code . . . . . . . . . . . . 25
1.7.2 Nominal logic in Isabelle . . . . . . . . . . . . . . . 28
1.7.3 Domain theory and the HOLCF package . . . . . . 29

2 Formalizing Launchbury’s natural semantics 33
2.1 Launchbury’s semantics . . . . . . . . . . . . . . . . . . . . 34

2.1.1 Natural semantics . . . . . . . . . . . . . . . . . . . 35



iv Contents

2.1.2 Denotational semantics . . . . . . . . . . . . . . . . 39
2.1.3 Discussions of modifications . . . . . . . . . . . . . 42

2.2 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.1 Discussions of modifications . . . . . . . . . . . . . 50

2.3 Adequacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3.1 The resourced denotational semantics . . . . . . . . 51
2.3.2 Denotational black holes . . . . . . . . . . . . . . . . 53
2.3.3 Resourced adequacy . . . . . . . . . . . . . . . . . . 55
2.3.4 Relating the denotational semantics . . . . . . . . . 57
2.3.5 Concluding the adequacy . . . . . . . . . . . . . . . 58
2.3.6 Discussions of modifications . . . . . . . . . . . . . 58

2.4 Data type encodings and base values . . . . . . . . . . . . . 61
2.4.1 Data types via Church encoding . . . . . . . . . . . 61
2.4.2 Adding Booleans . . . . . . . . . . . . . . . . . . . . 64

2.5 A small-step semantics . . . . . . . . . . . . . . . . . . . . . 67
2.5.1 Sestoft’s mark-1 abstract machine . . . . . . . . . . 68
2.5.2 Relating Sestoft’s and Launchbury’s semantics . . . 69
2.5.3 Discussions of modifications . . . . . . . . . . . . . 73

2.6 The Isabelle formalisation . . . . . . . . . . . . . . . . . . . 75
2.6.1 Employing nominal logic . . . . . . . . . . . . . . . 75
2.6.2 The type of environments . . . . . . . . . . . . . . . 76
2.6.3 Abstracting over the denotational semantics . . . . 78
2.6.4 Relating the domains Value and CValue . . . . . . . 81

2.7 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3 Call Arity 87
3.1 The need for co-call analysis . . . . . . . . . . . . . . . . . . 89

3.1.1 A syntactical analysis . . . . . . . . . . . . . . . . . 89
3.1.2 Incoming arity . . . . . . . . . . . . . . . . . . . . . 90
3.1.3 Called-once information . . . . . . . . . . . . . . . . 91
3.1.4 Mutually exclusive calls . . . . . . . . . . . . . . . . 92
3.1.5 Co-call analysis . . . . . . . . . . . . . . . . . . . . . 93

3.2 The type of co-call graphs . . . . . . . . . . . . . . . . . . . 94
3.3 The Call Arity analysis . . . . . . . . . . . . . . . . . . . . . 95

3.3.1 The specification . . . . . . . . . . . . . . . . . . . . 95
3.3.2 The equations . . . . . . . . . . . . . . . . . . . . . . 97



Contents v

3.4 The implementation . . . . . . . . . . . . . . . . . . . . . . 105
3.4.1 Interesting variables . . . . . . . . . . . . . . . . . . 106
3.4.2 Finding the fixed points . . . . . . . . . . . . . . . . 107
3.4.3 Top-level values . . . . . . . . . . . . . . . . . . . . . 108
3.4.4 The graph data structure . . . . . . . . . . . . . . . . 109

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.5.1 Call Arity and list fusion . . . . . . . . . . . . . . . . 109
3.5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . 111
3.5.3 Measurements . . . . . . . . . . . . . . . . . . . . . 113
3.5.4 Compiler performance . . . . . . . . . . . . . . . . . 118

3.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.6.1 GHC’s arity analyses . . . . . . . . . . . . . . . . . . 119
3.6.2 Higher order sharing analyses . . . . . . . . . . . . 120
3.6.3 Explicit one-shot annotation . . . . . . . . . . . . . . 121
3.6.4 unfoldr/destroy and stream fusion . . . . . . . . . . 123
3.6.5 Worker-wrapper list fusion . . . . . . . . . . . . . . 124
3.6.6 Control flow based analyses . . . . . . . . . . . . . . 126

3.7 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.7.1 Improvements to the analysis . . . . . . . . . . . . . 126
3.7.2 Tighter integration into GHC . . . . . . . . . . . . . 127

4 The safety of Call Arity 129
4.1 Proof outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.2 Arity analyses . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.2.1 A concrete arity analysis . . . . . . . . . . . . . . . . 139
4.2.2 Functional correctness . . . . . . . . . . . . . . . . . 140

4.3 Cardinality analyses . . . . . . . . . . . . . . . . . . . . . . 145
4.3.1 Abstract cardinality analysis . . . . . . . . . . . . . 146
4.3.2 Trace tree cardinality analysis . . . . . . . . . . . . . 150
4.3.3 Co-call cardinality analysis . . . . . . . . . . . . . . 158
4.3.4 Call Arity, concretely . . . . . . . . . . . . . . . . . . 163

4.4 The Isabelle formalisation . . . . . . . . . . . . . . . . . . . 166
4.4.1 Size and effort . . . . . . . . . . . . . . . . . . . . . . 166
4.4.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.4.3 The trace tree type implementation . . . . . . . . . 167



vi Contents

4.5 The formalisation gap . . . . . . . . . . . . . . . . . . . . . 171
4.5.1 Core vs. my syntax . . . . . . . . . . . . . . . . . . . 171
4.5.2 Core vs. my semantics . . . . . . . . . . . . . . . . . 172
4.5.3 Core’s annotations . . . . . . . . . . . . . . . . . . . 173
4.5.4 Implementation vs. formalisation . . . . . . . . . . 174
4.5.5 Performance and safety in the larger context . . . . 175

4.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5 Conclusion 179

A Formal definitions and main theorems 183
A.1 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
A.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

A.2.1 Natural semantics . . . . . . . . . . . . . . . . . . . 187
A.2.2 Small-step semantics . . . . . . . . . . . . . . . . . . 188
A.2.3 Denotational semantics . . . . . . . . . . . . . . . . 188

A.3 Correctness and adequacy theorems . . . . . . . . . . . . . 190
A.4 Call Arity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

A.4.1 Arities . . . . . . . . . . . . . . . . . . . . . . . . . . 190
A.4.2 Co-call graphs . . . . . . . . . . . . . . . . . . . . . . 192
A.4.3 The Call Arity analysis . . . . . . . . . . . . . . . . . 193
A.4.4 Call Arity theorems . . . . . . . . . . . . . . . . . . . 195

B Call Arity code 197
B.1 Co-call graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 197
B.2 The Call Arity analysis . . . . . . . . . . . . . . . . . . . . . 200

Bibliography 211

Index 221



Abstract

HIGH level programming languages, in particular the lazy, pure, func-
tional kind, liberate the programmer from having to think about the

low-level details of how his code is going to be executed, and they give
the compiler extra leeway in optimising the program. This distance to
the actual machine makes it harder to reason about the effect of the com-
piler’s transformations on the program’s performance. Therefore, these
transformations are often only evaluated empirically by measuring the
performance of a few benchmark programs. This yields useful evidence,
but not universal assurance.

Formal semantics of programming languages can serve as guide rails
to the implementation of a compiler, and formal proofs can universally
show that the compiler does not inadvertently change the meaning of a
program. Can they also be used effectively to establish that a program
transformation performed by the compiler is indeed an optimisation?

In this thesis, I answer this question in three steps: I develop a new
compiler transformation; I build the tools to analyse it in an interactive
theorem prover; finally I prove safety of the transformation, i.e. that the
transformed program – in a suitable abstract sense – performs at least as
well as the original one.

My compiler transformation and accompanying program analysis Call
Arity, which is now shipped with the Haskell compiler GHC, solves
a long-standing problem with the list fusion program transformation:
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Accumulator passing list consumers like foldl and sum would, if they
were allowed to take part in list fusion, produce badly performing code.
Call Arity empowers the compiler to further rewrite such code, by eta-
expanding function definitions, into a form that runs efficiently again.
The key ingredient is a novel cardinality analysis based on the notion of
co-call graphs, which can detect whether a variable is used at most once,
even in the presence of recursion.

I provide empirical evidence that my analysis is indeed able to solve
the problem: Now list fusion can provide significant improvements in
these cases. The measurements also show that there are instances besides
list fusion where the transformation fires and improves the program. No
program in the benchmark suite regressed as a result of introducing Call
Arity.

In order to be able to verify these statements formally, I formalise
Launchbury’s natural semantics for lazy evaluation in the interactive
theorem prover Isabelle. As Launchbury’s semantics is a very successful
and commonly accepted semantics for lambda calculus with mutually
recursive let-bindings that models lazy evaluation, it is a natural choice
for this endeavour.

My formalisation uses nominal logic, in the form of the Isabelle package
Nominal2, to handle the issue of names and binders, which is generally
one of the main hurdles in any formalisation work in programming lan-
guages. It is one of the largest Isabelle developments using this method,
and the first to effectively combine it with the HOLCF package for domain
theory. My first attempt to combine these turned out to be a dead end. I
explain how and why that did not go well and how I eventually overcame
the challenges.

Furthermore, I give the first rigorous adequacy proof of Launchbury’s
semantics. The proof sketch given by Launchbury has resisted past at-
tempts to complete it. I found a more elegant and direct proof by slightly
deviating from his outline.

Equipped with this formalisation, I model the Call Arity analysis and
transformation in Isabelle and prove that it does not degrade program
performance. My abstract measure of performance is the number of
allocations performed by the program; I explain why this is a suitable
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choice for my use case. The proof is modular and introduces trace trees as
a suitable domain for abstract cardinality analyses.

Every formal development, whether machine-checked or not, has a
formalisation gap between the model and the modelled artefact. I discuss
the breadth of the gap, in particular its limits given that Call Arity is but
one part in a large, real-world compiler.

All in all I present novel program analyses to solve an open problem
with list fusion and to generally improve the compiler, and I demonstrate
how formal methods can be used to prove an operational property – safety
– at this high level.





Zusammenfassung

Höhere Programmiersprachen, insbesondere rein funktionale mit Bedarfs-
auswertung, befreien den Programmierer von der Pflicht, sich darüber
Gedanken zu machen, wie ihr Programm tatsächlich auf der Maschine
ausgeführt werden wird. Ebenso hat der Compiler beim Optimieren von
Programmen in solchen Sprachen größeren Spielraum. Dieser Abstand
zur Maschine macht es allerdings auch schwieriger, vorherzusagen, wie
sich die Programmtransformationen des Compilers auf die Leistung des
Programms auswirkt. Daher werden solche Transformationen oft nur
empirisch untersucht, indem die Leistung von ein paar wenigen Bei-
spielprogrammen gemessen wird. So werden zwar durchaus wertvolle
Anhaltspunkte gewonnen, jedoch keine allgemein gültigen Aussagen.

Formale Semantiken von Programmiersprachen können als Leitplanken
bei der Implementierung eines Compilers dienen, und formale Beweise
können allgemeingültig zeigen, dass ein Compiler die Bedeutung eines
Programmes nicht unbeabsichtigt verändert. Können wir mit ihrer Hilfe
auch beweisen, dass eine Programmtransformation, wie sie der Compiler
vornimmt, in der Tat eine Optimierung ist?

Dieser Frage gehe ich in dieser Arbeit in drei Schritte nach: Ich ent-
wickle eine neue Compiler-Transformation; ich baue die Werkzeuge um
sie in einem interaktiven Theorembeweiser zu untersuchen; letztendlich
beweise ich, dass das umgeschriebene Programm – in einem geeigneten
abstrakten Sinne – mindestens so performant ist als zuvor.
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Meine Compiler-Transformation, genannt Call Arity, wird inzwischen
mit dem Haskell-Compiler GHC ausgeliefert und löst ein schon lange
bestehendes Problem mit der Programmtransformation list-fusion: Funk-
tionen wie foldl und sum, die Listen verarbeiten und dabei einen Akku-
mulator verwenden, haben, wenn auch sie von list-fusion umgeschrieben
würden, zu unerwünscht langsamen Code geführt. Call Arity ermöglicht
es dem Compiler, solchen Code weiter umzuschreiben und wieder in
eine effiziente Form zu bringen, in dem er Funktionsdefinition geeignet
eta-expandiert. Die dabei entscheidende Zutat ist eine neue Kardinalitäts-
Analyse, die erkennen kann, wenn eine Variable höchstens einmal ver-
wendet wird – und das sogar bei rekursivem Code.

Ich zeige empirisch, dass meine Analyse tatsächlich das Problem löst
und nun auch in diesen Fällen list-fusion die Leistung der Programme
signifikant verbessern kann. Ich zeige auch, dass es Situationen jenseits
von list-fusion gibt, in denen meine Transformation anspringt und zu
Verbesserungen führt.

Um diese Aussagen auch formal überprüfen zu können, formalisiere
ich Launchburys Semantik für Sprachen mit Bedarfsauswertung im in-
teraktiven Theorembeweiser Isabelle. Diese verbreitete und allgemein
akzeptierte Semantik modelliert Bedarfsauswertung im Lambda-Kalkül
mit wechselseitiger Rekursion und ist daher in meinem Fall die Semantik
der Wahl.

Um die Problematik von Namen und Bindungen, die generell eine der
Hauptschwierigkeiten bei der Formalisierung von Programmiersprachen
ist, in den Griff zu bekommen, verwende ich Nominallogik, die für Isa-
belle im Paket Nominal2 implementiert ist. Meine Formalisierung ist eine
der größten Isabelle-Formalisierungen, die Nominal2 verwendet, und die
erste, die es effektiv mit dem HOLCF-Paket, welches Domänentheorie
umsetzt, kombiniert. Mein erster Anlauf, diese Techniken zu kombinie-
ren, scheiterte; ich erkläre, wie und warum, und beschreibe, wie ich die
Probleme letztendlich überwand.

Darüber hinaus habe ich den ersten rigorosen Beweis, dass Launchbu-
rys Semantik adäquat ist, geführt. Launchburys Beweisansatz widersteht
bisher jeglichen Versuchen, ihn zu vervollständigen. Ich wich ein wenig
von dem Weg ab, den er umrissen hat, und fand so einen eleganteren und



Zusammenfassung xiii

direkteren Beweis.

Auf dieser Formalisierung baue ich auf, modelliere die Call Arity-Trans-
formation und -Analyse in Isabelle und beweise, dass sie die Leistung der
Programme nicht verringert. Als abstraktes Leistungsmaß verwende ich
dabei die Anzahl der Speicherzellen, die das Programm anfordert. Ich
erkläre, warum dies in meinem Fall eine geeignete Wahl ist. Der Beweis ist
modular und führt das Konzept der trace trees ein, mit der sich abstrakte
Kardinalitäts-Analysen beschreiben lassen.

Bei jeder Formalisierung, ob Computer-geprüft oder nicht, entsteht ein
Formalisierungs-Spalt zwischen dem Modell und dem Modellierten. Ich
bemesse die Breite des Spaltes, der sich im vorliegenden Fall insbeson-
dere daraus ergibt, dass Call Arity nur ein Teil eines großen, produktiv
eingesetzten Compilers ist.

Insgesamt führe ich also eine neue Programmanalyse ein, die ein offe-
nes Problem mit list fusion löst und auch darüber hinaus den Compiler
verbessert. Darüber hinaus zeige ich, wie formale Methoden genutzt
werden können um auf dieser hohen Abstraktionsebene Beweise über
nicht-funktionale Eigenschaften wie das Performanceverhalten zu führen.
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Functional programming combines
the flexibility and power of abstract
mathematics with the intuitive
clarity of abstract mathematics.

Randall Munroe, xkcd #1270

CHAPTER 1

Introduction

IT is a pleasure to create programs in functional programming languages,
as they allow for a very high-level style of programming, using abstrac-

tion and composition. It suits the human brain that is trying to solve a
problem, instead of accommodating the machine that has to implement
the instructions.

But such an abstraction comes at a cost: Generally, programs written
in such high-level style perform worse than manually tweaked low-level
code. Therefore, we reach out to optimising compilers, with the hope that
they can amend this overhead, at least to some extent.

An optimising compiler necessarily needs to be conservative in how it
changes the programs: We would not be happy if the program becomes
faster, but suddenly computes wrong results. Naturally, this limits the
compiler’s latitude in applying fancy and far-reaching transformations.
Conversely, the more declarative the language is – i.e. the less low-level
details it specifies – and the fewer side-effects can occur, the more possi-
bilities for optimising transformations arise.

This explains why compilers of pure, lazy functional programming
languages, such as Haskell, can pull quite astonishing tricks on the code.
A prime example for such a far-reaching transformation is list fusion: This
technique transforms a program built from smaller components, each
producing and/or consuming a list of values, into one combined loop.
This not only avoids having to allocate, traverse and deallocate the list

http://xkcd.com/1270
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structure of each intermediate value, it also puts the actual processing
codes next to each other, allowing for local optimisations to work on code
that was originally far apart.

Unfortunately, there are many instances of code where the sufficiently
smart compiler could do something clever – and often the uninitiated user
actually expects that clever thing to happen – but the real compilers out
there just do not do it yet. This thesis is about one such instance: A large
number of list processing functions, including common combinators such
as sum and length, were not set up to take part in list fusion. This is not
because including them in the technique is difficult to do, but because the
code that results from such a transformation would perform very badly.

I found a new program analysis, called Call Arity, which gives the
compiler enough information to further transform that problematic code
into nice, straightforward and efficient code – code that is roughly what a
programmer would write manually, if he chose to program such low-level
code. I motivate and describe the analysis and its impact on program
performance, determined empirically.

The same language treats – purity and laziness – which make it eas-
ier for the compiler to transform programs also ease a rigorous, formal
discussion of the artefacts at hand. I therefore evaluate Call Arity not
only empirically, but also prove that it is correct (i.e. does not change
the meaning of the program) and safe (i.e. does not make the program’s
performance worse). While the former is common practice in this field of
research, the latter is rarely done with such rigour.

What makes me so confident that my proof deserves to be called rigor-
ous? If I just did a pen-and-paper proof, I would not trust it to that extent.
For that reason, I implemented the syntax, the semantics and the compiler
transformations in the theorem prover Isabelle and performed all proofs
therein. Occasionally, this required derivations from the pen-and-paper
presentation given in this thesis. I discuss these differences, and other
noteworthy facts about the formalisation, in dedicated sections in the
following chapters.

Such a formal proof requires a formal semantics for the programming
language at hand, and in order to make statements about an operational
property, the semantics has to be sufficiently detailed. Launchbury’s
natural semantics for lazy evaluation [Lau93] is such a semantics, and
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can be considered a standard semantics in lazy functional programming
language research. I implemented this semantics in Isabelle, including
proofs of the two fundamental properties: correctness and adequacy (with
regard to a standard denotational semantics). As no rigorous proof of
adequacy existed before, I present my proof in detail.

I have structured this thesis as follows: This chapter contains a brief
introduction to the Haskell compiler GHC, in particular its intermediate
language Core, its evaluation strategy and list fusion, introduces the cen-
tral notion of arity, describes nominal logic and the interactive theorem
prover Isabelle. Chapter 2 lays the foundation by formally introducing
the syntax and the various semantics, and contains rigorous correctness
and adequacy proofs for Launchbury’s semantics. Chapter 3 motivates,
describes and empirically evaluates Call Arity. Chapter 4 builds on the
previous two chapters and contains the formal proof that Call Arity is
safe.

Appendix A contains the Isabelle formulation of the main results and
relevant definitions. Appendix B lists the Haskell implementation of
Call Arity. The bibliography and an index of used symbols and terms,
including short explanations, follow. Figure 1 contains a map to the main
artefacts and how they relate to each other. In the interest of readability
I omit elaborate definitions and descriptions in the figure; if necessary,
consult the index.

1.1 Notation and conventions

I use mostly standard mathematical notation in this text, and any custom
notation is introduced upon its first use. The index at the end of the thesis
also includes symbols and notations, together with a short description of
each entry.

Proofs are concluded by a black square (�), definitions and examples
span to the next diamond (�).

When a function argument is just a single symbol, possibly with sub-
or superscripts, I usually omit the parentheses for better readability: fv e1
instead of fv(e1).
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Variables printed with a dot (e.g. α̇) refer to lists whose elements are
usually referred to by the plain variable (e.g. α). Variables printed with
a bar (e.g. ᾱ) refer to objects that are partial or total maps from variable
names to whatever the plain variable usually stands for. The same nota-
tion is used to distinguish related functions: If T is a plain function with
one argument of a certain type, then Ṫ is a function that expects a list
of elements of that type and T expects a map from variables names to
values of that type.

Source code listings and code fragments within the text are typeset
using a proportional sans-serif font, with language keywords highlighted
by heavy type: if p a then f 1 else f 2.

When writing Haskell code, I use some Unicode syntax instead of the
more common ASCII representation, in particular a lambda instead of a
backslash for lambda abstractions, and a proper arrow instead of ->, e.g.
(ńx → x) :: a → a.

The Isabelle code snippets are produced by Isabelle from the sources,
and printed in the usual LATEX style of Isabelle’s document generation
facilities. The name of the Isabelle file containing the snipped is given in
the top-right corner, unless it is the same as for the preceding snippet.

There are various schools of writing concerning the use of “we”, “I”
and “the author”. Since a dissertation thesis is necessarily more tied to
the person than a paper, even if it was a single author paper, I decided
to use the first person singular whenever I describe what I have done or
not done, and why I have done so. Nevertheless, large parts of the text,
especially the proofs, are an invitation to you, the reader, to follow my
train of thoughts. Optimistically assuming that you follow this invitation,
I will commonly use “we” in these parts, referring to you and me, just as
if we were standing in front of a blackboard where I walk you through
my proof.

I do not avoid the passive voice as fundamentally as other authors
would: It is used whenever I believe readability is best served this way.
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1.2 Reproducibility and artefacts

This thesis describes a few artefacts that cannot be included in their en-
tirety in the document, or that will evolve further in the future and thus
diverge from what is discussed here. This includes the Call Arity im-
plementation, which is part of the GHC source tree, and the Isabelle
formalisations of Launchbury’s semantics [Bre13] and of the safety of Call
Arity [Bre15d]. Furthermore, I have conducted performance measure-
ments of which only a summary is included in this text (Section 3.5.3), but
neither the raw data nor the tools that produced them.

In the interest of reproducibility and verifiability, I have collected all
these artefacts on http://www.joachim-breitner.de/thesis. In particular, there
you will find:

• The Isabelle sources of both developments, in precisely the version
that is described in this document, in three formats: The plain .thy
file, a browsable HTML version and the Isabelle-generated LATEX
output.

• Scripts to fetch and build GHC in the version discussed in this thesis
(7.10.3).

• Patches to that version of GHC to produce the various variants
compared in the benchmark sections.

• Scripts to run the benchmark suite, collect the results and produce
Tables 1 and 3 in the benchmark sections.

• Code that I have created to check claims in this thesis, e.g. about the
performance cost of unsaturated function calls (Section 1.4.3) and
the effect of Call Arity on difference lists (Table 2).

• The LATEX sources of the thesis document itself.

• Errata, if necessary.

http://www.joachim-breitner.de/thesis
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1.3 Lazy evaluation

With the title of this thesis sporting the term lazy evaluation so prominently,
it seems prudent to briefly introduce it in general terms.

Consider the function

writeErrorToLog e =
writeToLog ("Error " ++ errNum e ++ ": " ++ errDesc e)

which turns an error, given as an element of a structured data type, into a
readable text and uses a hypothetical writeToLog function to write the text
to a log file. In most programming languages, writeErrorToLog e would
first calculate the text and only then call writeToLog. But assume that
in the application at hand, logging is optional, and actually turned off:
writeToLog would have to discard the text passed to it, and the calculation
would have been useless. This behaviour is called strict evaluation or
call-by-value.

In a programming language with lazy evaluation, the function writeEr-
rorToLog would not actually assemble the text, but defer this calculation,
by creating a thunk that serves as a placeholder. If writeToLog decides
that no log file is to be written, it will discard the thunk and the useless
calculation never happens. On the other hand, if writeToLog does write to
the log file, this will eventually require the actual value of the argument
and only then trigger the evaluation of the thunk. We also say that its
evaluation is forced.

The point of lazy evaluation is not just to avoid useless computation:
One of its main benefits is that code can be refactored much more easily.
Consider the following plausible implementation of writeToLog:

writeToLog txt =
if logLevel >= 1 then appendFile "error.log" txt

else return ()

This function does two things: It decides whether logging is actually
required, and if so, it performs the logging. Likely there are more places
where we need to decide whether logging is required, so it is desirable to
abstract over this procedure and implement it in a definition of its own:
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ifLogging action =
if logLevel >= 1 then action

else return ()

writeToLog txt = ifLogging (appendFile "error.log" txt)

In a programming language with strict evaluation, this will not work
as intended: The argument appendFile "error.log" txt would be evaluated
before ifLogging gets a chance to check the log level. Our refactoring just
broke the program! Note that even in strict languages, the if-then-else-
construct evaluates the two branches lazily, but this is a built-in special
case for this syntactic construct, and not available for the programmer to
abstract over.

In a programming language with lazy evaluation, however, this refac-
toring is valid. This way, lazy evaluation allows the programmer to define
custom control structures.

Another aspect of lazy evaluation that is crucial to my work is sharing:
Although the argument to a function is not evaluated until it is used
for the first time, it will not be evaluated a second time. For example
the code map (2∧b *) xs, which multiplies every element of the list xs
by a certain power of two, will not actually calculate 2∧b if the list xs
is empty. But even if xs has more than one element, 2∧b is calculated
only once, and the result is shared between the various uses. This feature
distinguishes lazy evaluation, also called call-by-need, from call-by-name
evaluation. According to the latter scheme, which is of less practical
relevance, the calculation of an argument is also deferred until it is needed,
but it would be re-evaluated repeatedly if used more than once.

A common way to implement sharing is to add code to every thunk
that, after the evaluation of the thunk has been triggered and its value has
been calculated, replaces the thunk by this value, so that every existing
reference to the thunk now references the value. This mechanism is called
updating.
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1.4 The GHC Haskell compiler

The programming language Haskell has been created in the 1990s by
a committee with the aim to overcome the then wild growths of lazy
functional programming languages. The committee produced a series of
language specifications, including the final Haskell 98 language report
[Pey03].1 This standardisation allowed a number of Haskell compilers to
emerge.

These days, still a number of compilers are actively developed, but
while most of them are dedicated to special purposes or research, only
one compiler is of practical relevance: The Glasgow Haskell Compiler
(GHC).

In order for my work to have an impact on actual users using Haskell
to solve real problems, I implemented Call Arity within GHC. It was first
shipped with GHC-7.10, released on March 27th 20152. GHC’s internal
structure necessarily influenced the design and implementation of Call
Arity, so I will outline its relevant features here.

1.4.1 GHC Core

Speaking in terms of syntax, Haskell is a large language: As of version
7.10.3 of GHC, the data types used to represent the abstract syntax tree of
an Haskell expression have over 79 constructors, and 24 more are required
to express the Haskell types. Therefore GHC – like most compilers –
transforms the source language into a smaller intermediate language. In
this case, the intermediate language is GHC Core and uses only the 15
constructors given in Fig. 2 to represent expressions.

The translation from Haskell to Core is not just a matter of simple
syntactic desugaring, as the type systems differ noticeably: Haskell has
features in the type system that have a computational meaning; most
prominently type classes. Therefore, GHC has to type-check the full
Haskell program, and as a side-effect of type-checking the compiler pro-
duces the code that implements these features. In the case of type classes

1After a long phase of stability, a revision was published in 2010 and is now the most recent
Haskell specification [Mar10]. With regard to this thesis, the differences are irrelevant.

2The coincidence with my birthday is, well, coincidental.
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data Expr b = Var Id
| Lit Literal
| App (Expr b) (Expr b)
| Lam b (Expr b)
| Let (Bind b) (Expr b)
| Case (Expr b) b Type [(AltCon, [b], Expr b)]
| Cast (Expr b) Coercion
| Tick (Tickish Id) (Expr b)
| Type Type
| Coercion Coercion

data AltCon = DataAlt DataCon
| LitAlt Literal
| DEFAULT

data Bind b = NonRec b (Expr b)
| Rec [(b, (Expr b))]

Figure 2: The data type representing GHC Core expressions
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the compiler generates dictionaries3 for each instance and passes them
around as regular function arguments.

Nevertheless, Core does have a type system, and Core terms are ex-
plicitly typed. This is used as an effective quality assurance tool [MP12]:
The internal type checker (called linter) would complain if the Core gen-
erated from the Haskell source is not well-typed, or if any of the further
processing steps breaks the typing. The type system is relatively small (12
constructors) but powerful enough to support all features of the Haskell
type system, including fancy extensions like GADTs [PVWW06] and type
families [SPCS08].

The theory behind Core is System FC, an explicitly typed lambda calcu-
lus with explicit type abstraction and application as well as type equality
witnesses called coercions [SCPD07]. The latter add another 15 construc-
tors to the count. Core and its theoretical counterpart, System FC, are
continuously refined, recently by a stratification of the coercions into roles
[WVPZ11; BEPW14].

Most of the published research around Core and System FC revolves
around the type system: How to make it more expressive and more
powerful. There is, however, a lack of operational treatments of Core
in the literature. The extended version of [BEPW14] contains a small-
step semantics of System FC. It serves not as a description of Core’s
operational behaviour but rather as a tool to prove type safety of System
FC and punts on let-bindings completely. Eisenberg also maintains a
small-step semantics for full Core [Eis15], which is call-by-name. There
is no description of how Core implements lazy evaluation besides the
actual implementation in GHC, i.e. the Core-to-STG transformation. This
lack contributed to the breadth of the formalisation gap of this work
(Section 4.5.2).

Almost all of the optimisations performed by GHC are Core-to-Core
transformations; Call Arity is no exception. But as not all features of Core
are relevant in the description and discussion of Call Arity, the trimmed
down lambda calculus introduced in Section 2.1 serves to take the role of
Core; I discuss this simplification in Section 4.5.1.

3From an operational point of view, these might better be called tuples, as they are single-
constructor data types and the members are at fixed, statically known positions. There is
no runtime string-based lookup as in “dictionaries” in dynamic languages.
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1.4.2 Rewrite rules and list fusion

When we teach functional programming, we often use equational rea-
soning to explain when two programs are the same, or to derive more
specialised or faster programs from specifications or existing programs,
e.g. as Bird does [Bir89]. Such equational reasoning is especially power-
ful in pure, lazy languages, as more equalities hold here: For example,
bindings may be floated out of or into expressions, or inlined completely,
common code patterns can be abstracted into higher-order functions etc.

But instead of expecting the programmer to apply such equalities, we
can actually teach the compiler to do that. This mechanism, called rewrite
rules, lets the author of a software library specify rules that contain a
code pattern (the left-hand side of the rule) and replacements (the right-
hand side of a rule), with free variables that will be matched by any code
[PTH01].

For example, the code

{-# RULES
"map/map" forall f g xs. map f (map g xs) = map (f . g) xs
#-}

allows the compiler to make use of the functoriality of map and replace
code like

sum (map (+1) (map (∗2) [0..10]))

by

sum (map ((+1) . (∗2)) [0..10]),

which calls map only once, and hence avoids the allocation, traversal and
deallocation of one intermediate list.

What about the other intermediate lists in that code? Can we get rid
of them as well? After all, the code could well be written completely
list-lessly:4

4Due to the excessive use of the stack, this is not an efficient way to sum the elements of a
list, and a real implementation would use a strict accumulator and tail recursion. For the
sake of this explanation, please bear with me here.
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go 0
where
go n | n > 10 = 0

| otherwise = (n∗2 + 1) + go (n + 1)

This feat is done by list fusion [GLP93], which is essentially a set of
rewrite rules that tell the compiler how to transform the high-level code
with lists into the nice code above. The central idea is that instead of
allocating the list constructors (: and []), the producer of a list passes the
head of the list and the (already processed) tail of the list to a function
provided by the consumer. Thus a list producer is expected to use the
following build function to produce a list, instead of using the constructors
directly:

build :: forall a. (forall b. (a → b → b) → b → b) → [a]
build g = g (:) []

The higher rank type signature ensures that g is consistent in using
the argument provided by build to produce the result: By requiring the
argument g to build a result of an arbitrary type b, it has no choice but to
use the given arguments (here (:) and []) to construct it.

A list producer implemented using build is called a good producer.
For example, instead of defining the enumeration function naively as

[n..m] = go n m
where
go n m | n > m = []

| otherwise = n : go (n+1) m

it can be defined in terms of build, and thus the actual code in go is abstract
in the list constructors:

[n..m] = build (go n m)
where
go n m cons nil | n > m = nil

| otherwise = n ‘cons‘ go (n+1) m cons nil
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The build function has a counterpart that is to be used by list consumers;
it is the well-known right-fold:

foldr :: (a → b → b) → b → [a] → b
foldr k z = go
where
go [] = z
go (y:ys) = y ‘k‘ go ys

Any list consumer implemented via foldr is called a good consumer.
It is a typical exercise for beginners to write a list consuming function

like sum in terms of foldr:5

sum :: [Int] → Int
sum xs = foldr (+) 0 xs

After rewriting as many list producers as possible in terms of build, and
as many list consumers as possible in terms of foldr, what have we gained?
The benefit comes from one single and generally applicable rewrite rule

{-# RULES
"fold/build" forall k z g. foldr k z (build g) = g k z
#-}

which fuses a good producer with a good consumer. It makes the producer
use the consumer’s combinators instead of the actual list constructors,
and thus eliminates the intermediate list.

Simplifying our example a bit, we can see that sum [0..10] would, after
some inlining, become

foldr (+) 0 (build (go 0 10))
where
go n m cons nil | n > m = nil

| otherwise = n ‘cons‘ go (n+1) m cons nil

where the rewrite rule is applicable, and GHC rewrites this to

5As mentioned in the previous footnote, this is not a good and practical definition for
summation. In your code, please do use sum = foldl’ (+) 0 instead!
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go 0 10 (+) 0
where
go n m cons nil | n > m = nil

| otherwise = n ‘cons‘ go (n+1) m cons nil

which can further be simplified (by a constant propagation and dropping
unused arguments) to

go 0 10
where
go n m | n > m = 0

| otherwise = n + go (n+1) m

which is roughly the code we would write by hand.

A function like map is both a list consumer and a list producer, but it
poses no problem to make it both a good consumer and a good producer:

map :: (a → b) → [a] → [b]
map f xs = build (ńcons nil → foldr (ń x ys → f x ‘cons‘ ys) nil xs)

With this definition for map, the compiler will indeed transform the
expression sum (map (+1) (map (∗2) [0..10])) into the nice list-less code
on page 12.

It is remarkable that list fusion does not have to be a built-in feature of
the compiler, but can be completely defined by library code using rewrite
rules.

List fusion based on foldr/build is but one of several techniques to
eliminate intermediate data structures; there is unfoldr/destroy [Sve02] and
stream fusion [CLS07]; they differ in what functions can be efficiently
turned into good producers and consumers [Cou10]. I focus on foldr/build
as that is the technique used for the list data type in the Haskell standard
libraries.
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multA :: Int → Int → Int
multA 0 y = 0
multA x y = x ∗ y

multB :: Int → Int → Int
multB 0 = ń_ → 0
multB x = ńy → x ∗ y

Figure 3: Semantically equal functions with different arities

1.4.3 Evaluation and function arities

When GHC is done optimising the program at the Core stage, it transforms
it to machine code via yet another intermediate language. GHC Core is
translated to the Spineless Tagless G-Machine (STG) [Pey92]. Although
still a functional language based on the untyped lambda calculus, it
already determines many low-level details of the eventual execution:
In particular, allocation of data and of function closures is explicit, the
memory layout of data structures is known and all functions have a
particular arity, i.e. number of parameters. So although it is not machine
code yet, together with the runtime system (which is implemented in C),
most details of the runtime behaviour are known by now.

The function arity at this stage has an important effect on performance,
as a mismatch between the number of arguments a function expects and
the number of arguments it is called with causes significant overhead
during execution.

Consider the two functions in Fig. 3, which both implement a short-
circuiting multiplication operator. The first has an arity of 2, while the
second has an arity of 1. This matters: Evaluating the expression multB 1 2
is more than 25% slower than evaluating multA 1 2! Why is that so?

For the former, the compiler sees that enough arguments are given to
multA to satisfy its arity, so it puts them in registers and simply calls the
code of multA.

For the latter, the code first pushes onto the stack a continuation that
will, eventually, apply its argument to 2. Then it calls multB with only
the first argument in an register. multB then evaluates this argument
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and checks that is not zero. It then allocates, on the heap, a function
closure capturing x, and passes it to the continuation on the stack. This
continuation, implemented generically in the runtime, analyses the func-
tion closure to see that it indeed expects one more argument, so it finally
passes the second argument, and the actual computation can happen.

This example demonstrates why it is important for good performance
to have functions expect as many arguments as they are being called with.

Could the compiler simply always make a function expect as many
arguments as possible? No!

Compare the expression sum (map (multA n) [1..1000]) with the ex-
pression sum (map (multB n) [1..1000]). The former will call multA one
thousand times and thus perform the check n == 0 over and over again,
while the latter calls multB once, hence performs the check once, and then
re-uses the returned function a thousand times. In this example the check
is rather cheap, but even then, for n=0, the latter code is 20% faster. With
different, more expensive checks, the performance difference can become
arbitrarily large.

More details about how GHC implements function calls, and why it
does it that way, can be found in [MP06].

1.5 Arities and eta-expansion

The notion of arity is central to this thesis, and deserves a more abstract
definition in terms of eta-expansion. This definition formally builds on
the syntax and semantics introduced later, but can be understood on its
own.

Eta-expansion replaces an expression e by (ńz. e z), where z is fresh with
regard to e. More generally, the n-fold eta-expansion is described by

En(e) := (ńz1 . . . zn. e z1 . . . zn),

where the zi are distinct and fresh with regard to e.
We intuitively consider an expression e to have arity α ∈ N if we can

replace it by Eα(e) without negative effect on the performance – whatever
that means precisely. Analogously, for a variable bound by let x = e, its
arity xα is the arity of e.
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Example
The Haskell function

let f x = if x then ń y → y + 1
else ń y → y - 1

can be considered to have arity 2: If we eta-expand its right-hand side,
and apply some mild simplifications, we get

let f x y = if x then y + 1
else y - 1

which should in general perform better than the original code. Note that
in a lazy language, x will be evaluated at most once. �

In this example, I determined the arity of an expression based on its
definition and obtained its internal arity. Such an analysis has been part of
GHC since a while and is described in [XP05].

For the rest of this work, however, I treat e as a black box and instead
look at how it is being used, i.e. its context, to determine its external arity.
For that, I can give an alternative definition: An expression e has arity α if
upon every evaluation of e, there are at least α arguments on the stack.

Example
In the Haskell code

let f x = if g x then ń y → y + 1
else ń y → y - 1

in f 1 2 + f 3 4

the function f has arity 2: Because it is always called with two argu-
ments, the eta-expansion itself has no effect, but it allows for subsequent
optimisations that improve the code to

let f x y = if g x then y + 1
else y - 1

in f 1 2 + f 3 4.

The internal arity is insufficient to justify this, as in a different context,
this transformation could create havoc: Assume the function is passed
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to a higher-order function such as map (f 1) [1.1000]. If f were now eta-
expanded, the possibly costly call to g 1 would no longer be shared and
repeated a thousand times. �

If an expression has arity α, then it also has arity α′ for α′ ≤ α; every
expression has arity 0. The arities can thus be arranged to form a lattice:

· · · @ 3 @ 2 @ 1 @ 0.

For convenience, I set 0− 1 = 0. As mentioned in Section 1.1, ᾱ is a partial
map from variable names to arities, and α̇ is a list of arities.

1.6 Nominal logic

In pen-and-paper proofs about programming languages, it is customary
to consider alpha-equivalent terms as equal, i.e. ńx. x = ńy. y. The human
brain is relatively good in following that reasoning, keeping track of the
scope of variables and implicitly making the right assumptions about
what names in a proof may be equal to another. For example, in a proof
by induction on the formation of terms, it often goes without saying that
in the case for ńx. e, the x is fresh and not related to any name occurring
outside the scope of this lambda.

Such loose reasoning stands in the way of a rigorous and formal treat-
ment. If the formalisation introduces terms as raw terms where the
name of the bound variable contributes to the identity of the object, i.e.
ńx. x 6= ńy. y, then in every inductive proof one would have to worry
about the bound variable possibly being equal to some name in the con-
text, and if that poses a problem, one has to explicitly alpha-rename the
lambda abstraction, which in turn requires a proof that the statement of
the lemma indeed respects alpha-equivalence.

One alternative is to use nameless representations such as de-Bruijn
indices. With these, every term has a unique representation and the issue
of alpha-equivalency disappears. The downsides of such an approach are
the need for two different syntactic constructors for variables – one for
the index of a bound name, and one for the name of a free variable – and
the relatively unnatural syntax, which stands in the way of readability
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A way out is provided by nominal logic, as devised by Pitts [Pit03]. This
formalism allows us to use names as usual in binders and terms, while
still equating alpha-equivalent terms, and it provides induction principles
that allow us to assume bound names to be as fresh as we intuitively want
them to be.

This section gives a shallow introduction to nominal logic. I took
inspiration from [UT05], simplified some details and omitted the proofs.

In the main body of the thesis I present my definitions and proofs
in the intuitive and somewhat loose way, without making use of con-
cepts specific to nominal logic. In particular I do not bother to state the
equivariance of my definitions and predicates. Having a machine-checked
formalisation, where all these slightly annoying and not very enlightening
details have been taken care of, gives me the certainty that no problems
lurk here.

1.6.1 Permutation sets

A core idea in nominal logic is that the effect of permuting names in an
object describes its binding structure.

Full nominal logic supports an infinite number of distinct sorts of names,
or atoms, but as I do not need this expressiveness, I restrict this exposition
to one sort of atoms, here suggestively named Var.

We are concerned with sets that admit swapping names:

Definition 1 (PSets)
A pset is a set X with an action • of the group Sym(Var) on X. �

Deciphering the group theory language, this means that there is an opera-
tion • that satisfies, for every x ∈ X,

- () • x = x and
- (π1 · π2) • x = π1 • (π2 • x) for all permutations π1, π2

where () is the identity permutation, and · the usual composition of
permutations.

The set of atoms, Var, is naturally a pset, with the standard action of the
permutation group.

Any set can be turned into a pset using the trivial operation, i.e. π • x =
x for all elements x of the set. This way, objects that do not “contain
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names”, e.g. the set of natural numbers, or the Booleans, can be elegantly
part of the formalism. Such a pset is called pure.

Products and sums of psets are psets, with the permutations acting on
the components. Similarly, the set of lists with elements in a pset is a pset.

Functions from psets to psets are psets, with the action defined as

π • f = λx.π • ( f (π−1 • x)).

Note that the permutation acting on the argument has to be inverted.

1.6.2 Support and freshness

Usually, when discussing names and binders, one of the first definitions
is that of fv e, the set of free variables of some term e. Intuitively, it is the
set of variables occurring in e that are not hidden behind some binder.

But this intuition gets us only so far: Consider the identity function
id: Var → Var. On the one hand, it does not operate on any variables,
it just passes them through. On the other hand, its graph mentions all
variables. So what should its set of free variables be – nothing ({}) or
everything (Var)?

Nominal logic avoids this problem by giving a general and abstract
definition of the set of free variables6 of an element of any pset:

Definition 2 (Free and fresh variables)
The set of free variables of an element x of some pset X is defined as

fv x = {a | card{b | (a b) • x 6= x} = ∞}. �

A variable v is fresh with regard to x if v /∈ fv x.

Spelled out, this says that a variable a is free in x if there are infinitely
many other variables b such that swapping these two affects x. Or, more
vaguely, a matters to x.

6This is commonly called the support. I use the term free variables in this introduction, as the
notions coincide in all cases relevant to this thesis.
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From this definition, many useful and expected equalities about fv can
be derived:
• fv v = {v} for v ∈ Var.
• fv((x, y)) = fv x ∪ fv y.
• fv x = {} if x is from a pure pset.
• fv(id) = {}, as π • id = id for all permutations π.
• If a, b /∈ fv x, then (a b) • x = x.

When talking about programming languages, we are used to having
“enough” variables, i.e. there is always one that is fresh with regard to
everything else around.

This is not true in general. For example, let f : Var→N be a bijection,
then fv f = Var, as every transposition (a b) changes f . If such an object
would appear during a proof, we would not be able to say “let x be a
variable that is fresh with regard to f ”

But in practice, such objects do not occur, and there is always a fresh
variable. This is captured by the following

Definition 3 (Finite support)
A pset X is said to have finite support if fv x is finite for all x ∈ X. �

Since Var is infinite, it immediately follows that for every x from a pset
with finite support, there is a variable a that is fresh with regard to x.

The pset Var, as well as every pure pset, is a set with finite support.
Products, sums and lists of psets with finite support have themselves
finite support.

Sets of functions from psets with finite support, or from an infinite set
to a pset with finite support, do in general not have finite support. This
can be slightly annoying, as discussed in Section 2.6.2.

1.6.3 Abstractions

The point of nominal logic is to provide a convenient way to work with
abstractions. Formally, a nominal abstraction over a pset X is any operation
[_]._ : Var→ X → X that fulfils

(i) π • ([a].x) = [π • a].(π • x) and
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(ii) [a].x1 = [b].x2 ⇐⇒ x1 = (a b) • x2 ∧ (a = b ∨ a /∈ fv x2).

For a pset X with finite support, this implies

fv([a].x) = fv x \ {a},

which further shows that this notion of free variables coincides with our
intuition and expectation.

This notion of abstraction can be extended to multiple binders, e.g. to
represent mutually recursive let-expressions [UK12].

1.6.4 Strong induction rules

My use case for nominal logic is to model the syntax of the lambda
calculus, and to get better induction principles.

Consider this inductive definition of lambda expressions:

e ∈ Exp ::= x | e e | λx.e

where x is a meta-variable referring to elements of Var. This would yield
the following induction rule

(∀x ∈ Var. P(x)) =⇒
(∀e1, e2 ∈ Exp. P(e1) =⇒ P(e2) =⇒ P(e1 e2)) =⇒
(∀x ∈ Var, e ∈ Exp. P(e) =⇒ P(λx.e)) =⇒ P(e)

where in the case for lambda expressions, the proof obligation is to be
discharged for any variable x, even if that variable is part of the context
(i.e. mentioned in P). This can be a major hurdle during a proof.

If one had Exp as a permutation set such that λx.e is a proper nominal
induction, then it would be possible to prove a stronger induction rule:

(∀s ∈ X, x ∈ Var. P(s, x)) =⇒
(∀s ∈ X, e1, e2 ∈ Exp. P(s, e1) =⇒ P(s, e2) =⇒ P(s, e1 e2)) =⇒
(∀s ∈ X, x ∈ Var, e ∈ Exp. x /∈ fv s =⇒ P(s, e) =⇒ P(s, λx.e)) =⇒

P(s, e)
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Here the proposition P explicitly specifies its “context” in its first param-
eter, which may be of any pset X with finite support. In the case for
the lambda abstraction, we may additionally, and without any manual
naming or renaming, assume the variable x to be fresh with regard to that
context.

The construction of Exp as a permutation set with a nominal abstraction
is not trivial and described in [UT05]. Luckily, we do not have to worry
about that: The implementation of nominal logic in Isabelle takes care of
that (cf. Section 1.7.2).

1.6.5 Equivariance

The last concept from nominal logic that I need to introduce at this point
is that of equivariance. In order to systematically construct inductively
defined types as psets, and then to define functions over terms of such
types by giving equations for each of these “constructors”, the involved
operations and functions need to be well-behaving, i.e. oblivious to the
concrete names involved. This intuition is captured by the following
definition:
Definition 4 (Equivariance)
A function f : X1 → X2 → · · · → Xn → X, n ≥ 0, between psets is called
equivariant if

π • f (x1, x2, . . . , xn) = f (π • x1, π • x2, . . . , π • xn). �

Most common operations, such as tupling, list concatenation, the con-
structors of Exp etc. are equivariant, and this ability to freely move per-
mutations around is crucial to, for example, being able to prove

(λx. e x) = (λy. e y).

1.7 Isabelle

This work has been formalised in the interactive theorem prover Isabelle
[NPW02]. Roughly speaking, an interactive theorem prover has the ap-
pearance of a text editor that allows the user to write mathematics (defini-
tions, theorems, proofs), with the very peculiar feature that it understands
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what is written, and either points out problems to the user, or confirms
the correctness of the math.

There are a number of such systems in use, with Coq [Coq04] and
Isabelle being the most prominent examples. One distinguishing feature
of Isabelle is its genericity: It provides a meta-logical framework that can
be instantiated with different concrete logics.

I build on the logic Isabelle/HOL, which implements a typed higher-
order logic of total functions, in contrast to, for example, Isabelle/ZF,
which builds on untyped set theory à la Zermelo-Fraenkel. Although I,
like – I presume – most mathematicians, have been taught mathematics
assuming set theory as the foundation of all math, all the actual math
that we commonly do happens in an implicitly typed setting, and the
choice of Isabelle/HOL over Isabelle/ZF is indeed natural. Furthermore,
the tooling provided by Isabelle – libraries of existing formalisations,
conservative extensions, proof automation – is much more comprehensive
for Isabelle/HOL.7

This theses builds on and refers to the Isabelle 2016 release.

1.7.1 The prettiness of Isabelle code

One distinguishing feature of Isabelle is its proof language Isar [Nip02],
which has a somewhat legible syntax with keywords in English and allows
for proofs that are nicely structured and readable. Furthermore, Isabelle
supports generating LATEX code from its theory files. So the question arises
whether I could have avoided re-writing everything in the hand-written
style, by generating the all the definitions, proofs and theorems of this
thesis out of my Isabelle theories.

For some parts, this would certainly be a viable option. Consider the
hand-written proof and the corresponding fragment of the Isabelle theory
in Fig. 4, taken from the case for application in the proof of Theorem 2. To
a reader who knows some Isabelle syntax, it is pleasing to see how similar
the hand-written proof and the Isabelle formalisation are. However, even
this carefully selected fragment still has its warts:

7In Isabelle 2016, the HOL directory is more than 13 times the size of the ZF directory,
measured in lines of code.
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Je xK{{Γ}}ρ = JeK{{Γ}}ρ ↓Fn {{Γ}}ρ x

{ by the denotation of application }

= Jńy. e′K{{∆}}ρ ↓Fn {{Γ}}ρ x

{ by the induction hypothesis }

= Jńy. e′K{{∆}}ρ ↓Fn {{∆}}ρ x

{ see above }

= Je′K({{∆}}ρ)(y 7→{{∆}}ρ x)

{ by the denotation of lambda abstraction }

= Je′[y := x]K{{∆}}ρ
{ by Lemma 5 }

= JvK{{Θ}}ρ
{ by the induction hypothesis }

CorrectnessOriginal.thyhave [[ App e x ]]{|Γ|}$ = ([[ e ]]{|Γ|}$) ↓Fn ({|Γ|}$) x
by simp

also have . . . = ([[ Lam [y]. e ′ ]]{|∆|}$) ↓Fn ({|Γ|}$) x
using Application.hyps(9)[OF prem1] by simp

also have . . . = ([[ Lam [y]. e ′ ]]{|∆|}$) ↓Fn ({|∆|}$) x
unfolding ∗..

also have . . . = (Fn·(Λ z. [[ e ′ ]]({|∆|}$)(y := z))) ↓Fn ({|∆|}$) x
by simp

also have . . . = [[ e ′ ]]({|∆|}$)(y := ({|∆|}$) x)
by simp

also have . . . = [[ e ′[y ::= x] ]]{|∆|}$
unfolding ESem_subst..

also have . . . = [[ v ]]{|Θ|}$
by (rule Application.hyps(12)[OF prem2])

finally
show [[ App e x ]]{|Γ|}$ = [[ v ]]{|Θ|}$.

Figure 4: A hand-written proof and the corresponding Isabelle code
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• The syntax does not quite match up. For example, the abstract
syntax tree node for an application is written explicitly using the
App constructor, whereas it is nicer to simply write e x. This is not
possible in Isabelle – juxtaposition cannot be overloaded.8

In some cases, I can define custom syntax in Isabelle that comes
very close to what I want. The _ ↓Fn _ operator is a good example
for that. Unfortunately, this often comes at the cost of extra incon-
venience when entering these symbols. In antiquotations, where
Isabelle is asked to produce a certain existing term, such as the
conclusion of a previously proven lemma, Isabelle can make use
of such fancy syntax automatically, and hence for free, but regular
Isabelle theories will be converted to LATEX as they are entered, so in
order to get fancy syntax, fancy syntax needs to be typed in.

• An Isabelle formalisation will almost always contain some techni-
calities that I would like not to pervade the presentation.

A good example for that is the seemingly stray centre dot after
Fn: My formalisation uses the HOLCF package [Huf12], which
has a type dedicated to continuous functions. This design choice
avoids having to explicitly state continuity as a side conditions, but
it also means that normal juxtaposition cannot be used to apply such
functions, and a dedicated binary operator has to be used explicitly
– this is the “·” seen in some of the Isabelle listings in this thesis.

• While Isabelle commands are chosen so that a theory is reminiscent
of a proper English text, it is not a great pleasure to read. Many
Isabelle commands (such as by simp) are only relevant to the system,
but should be omitted when addressing a human reader, and other
bits of technical syntax (e.g. invoking the induction hypothesis as
Application.hyps(9)[OF prem1]) would be out of place.

There are ways to hide any part of the Isabelle code from the gen-
erated LATEX, but these markers would in turn clutter the Isabelle
source code, and defeat the purpose of having a faithful representa-
tion of the proof in print.

8At least not within reasonable use of the system.
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Other parts of the development are even further away from a clean
and easy-to-digest presentation, so I chose to keep most of the Isabelle
development separate from the dissertation thesis. Appendix A contains
a few snippets of the development, namely the main theorems and all
definitions that are involved in them. The full formalisation is published
in the Archive of Formal Proof [Bre13; Bre15d].

1.7.2 Nominal logic in Isabelle

I have outlined the concepts of nominal logic in Section 1.6 in general
terms. In my formalisation, I did not implement this machinery myself,
but rather build on the Nominal2 package for Isabelle by Christian Urban
and others [UT05; UK12], which provides all the basic concepts of nominal
logic, together with tools to work with them.

Permutation sets are modelled as types within the type class pt, which
fixes the permutation action •. In the context of this type class, the package
provides general definitions for support (supp), freshness (fresh, or written
infix as ]). Type classes that extend pt with additional requirements are fs
for permutation sets with finite support and pure for pure permutation
sets.

I define the function fv as the support, restricted to one sort of atoms:

Nominal-Utils.thydefinition fv :: ′a::pt⇒ ′b::at_base set
where fv e = {v. atom v ∈ supp e}

Nominal2 provides the proof method perm_simp which simplifies proof
goals involving permutations by pushing them inside expressions as far
as possible. It maintains a list of equivariance theorems that the user can
extend with equivariance lemmas about newly defined constants.

The command nominal_datatype allows the user to conveniently con-
struct a permutation set corresponding to a usual, inductive definition
with binding structure annotated. See Section 2.6.1 for an example.

The constructors of such a data type cannot be used as constructors
with Isabelle tools like fun, because they do not completely behave as
such. For example, they are not necessarily injective. Therefore, Nominal2
provides the separate command nominal_function to define functions



1.7 Isabelle 29

over a nominal data type. It is not completely automatic and requires the
user to discharge a number of proof obligations, such as equivariance of
the function’s graph and representation independence of the equations.

Similarly, Nominal2 provides the command nominal_inductive, which
can be used, after defining an inductive predicate as usual with inductive,
to specify which free variables of a rule should not clash with the context
during a proof by induction. It requires the user to prove that the variable
is fresh with regard to the conclusion of the rule, and in return generates
a stronger induction rule akin to the one shown in Section 1.6.4. The
proof method nominal_induct, which can be used instead of the usual
induct method, supports the additional option avoiding and instantiates the
strong induction rule so that the desired additional freshness assumptions
become available.

1.7.3 Domain theory and the HOLCF package

Applications of domain theory, i.e. the mathematical field that studies
certain partial orders, pervade programming language research: They are
used to give semantics to recursive functions and to recursive types; they
structure program analysis results and tell us how to find fixpoints.

As my use of domain theory in this thesis is quite standard, I will elide
most of the technicalities and usually state just the partial order used.
My domains are of the pointed, chain-complete kind. I consider only ω-
chains, i.e. sequences (ai)i∈N with ai v ai+1; completeness of the domain
implies that every such chain has a least upper bound

⊔
i∈N ai. A domain

is called pointed if it has a least element, written ⊥.
This choice is motivated by my use of the Isabelle package HOLCF

[Huf12], which is a comprehensive suite of definitions and tools for work-
ing with domain theory in Isabelle. In particular, it allows me to define
possibly complex recursive domains such as the domain used by the
resourced denotational semantics in Section 2.3.3, with one command:

CValue.thydomain CValue
= CFn (lazy (C→ CValue)→ (C→ CValue))
| CB (lazy bool discr)
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This will not only define the type CValue, but also the two injection
functions CFn and CB, corresponding projection functions and induction
principles. The command fixrec can then define functions over such a
domains.

The type CValue is then automatically made a member of a number of
type classes that come with HOLCF. Most relevant for us are

• po for types supporting a partial order, written with square operators
and relations, i.e. v,

• cpo for complete partial orders, i.e. types in po where additionally
every ω-chain has a least upper bound and

• pcpo for pointed complete partial order, which extends cpo by the
requirement that a least element ⊥ exists.

HOLCF introduces a type dedicated to continuous functions, written
′a→ ′b, which is separate from Isabelle’s regular function type, written
′a⇒ ′b. Encoding the continuity of functions in the types avoid having to
explicitly assume functions to be continuous in the various lemmas.

This is particularly important when some definition is only well-defined
if its arguments are continuous, as it is the case for the fixed-point operator
fix : ( ′a→ ′a)→ ′a (with ′a::pcpo, i.e. the type ′a has an instance of the type
class pcpo). Without this trick, fix would not be a total function, and
working with partial functions in Isabelle is always annoying to some
degree.

The downside of this design choice is that such continuous functions
cannot be applied directly. Therefore, HOLCF introduces an explicit
function application operator _·_ : ( ′a → ′b) ⇒ ′a ⇒ ′b. I advise to sim-
ply assume this operator is not there when reading Isabelle code using
HOLCF.

The custom type has further consequences: Existing tools to define new
functions, such as definition, fun and the Nominal-specific command
nominal_function know how to define normal functions, but are unable
to produce values of type ′a→ ′b. In these cases, I have to resort to
defining the function by using the – again HOLCF-specific – lambda
abstraction for continuous functions written (Λ x. e) on the right-hand



1.7 Isabelle 31

side of the definition. I can still prove the intended function equations,
with the argument on the left-hand side, manually afterwards, as long as
the function definition is indeed continuous.

The standard proof principle for functions defined in terms of the afore-
mentioned fix is fixed-point induction: In order to prove that a predicate
P holds for fix·F, where the functorial F is of type ′a→ ′a with ′a::pcpo, it
suffices to prove that
• the predicate P is admissible, i.e. if it holds for all elements of a

chain, then it holds for the least upper bound of the chain,
• P holds for ⊥ and
• P holds for any F·x, given that P holds for x.

A derived proof principle is that of parallel fixed-point induction which
can be used to establish that a binary predicate P (usually an equality or
inequality) holds for fix·F and fix·G. This requires a proof that
• the predicate P, understood as a predicate on tuples, is admissible,
• P ⊥ ⊥ holds and
• P (F·x) (F·y) holds, given that P x y holds.

Both principles are provided by HOLCF as lemmas, and an extensible
set of syntax-directed lemmas helps to take care of the admissibility proof
obligation.





I mean, ostensibly, yes. Honestly, we
hacked most of it together with Perl

Randall Munroe, xkcd #224

CHAPTER 2

Formalizing Launchbury’s
natural semantics

FORMAL semantics are the basic building block of all rigorous program-
ming language research. Not only do they force us to think our work

through in all details – without a precise definition of the meaning of
programs, we cannot conduct any proofs. Therefore, as I do want to be
able to prove theorems about my work, I need a suitable semantics, and
also implement it in Isabelle.

Furthermore, semantics provide a common ground for the research
community: If the same semantics are used, then results can easily be com-
pared and combined. Therefore, I should not just define a semantics that
happens to suit me, but preferably choose an existing, well-established
semantics to build on.

One such semantics is John Launchbury’s “Natural Semantics for Lazy
Evaluation” [Lau93], which has several important traits: It is simple, as
it has only four rules. It is detailed enough to model lazy evaluation. It
is abstract enough to not model unnecessary details. And it is widely
accepted as a standard semantics.

Using a standard denotational semantics, Launchbury underpins his
natural semantics by claiming correctness (evaluation in the natural se-
mantics preserves denotation) and adequacy (all programs with a de-
notation have a derivation in the natural semantics). While he proves

http://xkcd.com/224
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x, y, z, w ∈ Var

e ∈ Exp ::= ńx. e

| e x

| x

| let x1 = e1, . . . , xn = en in e

Figure 5: Launchbury’s core lambda calculus

correctness in sufficient detail, he only outlines the adequacy proof – an
omission that resisted fixing, despite the popularity of the semantics, and
despite serious attempts to follow his proof sketch (e.g. [SHO14]).

In this chapter, I reproduce Launchbury’s semantics, including subse-
quent improvements by Sestoft [Ses97] and modernisations to how names
binding is handled. This yields a definition that is suitable for formal-
isation in Isabelle. The original correctness proof was almost directly
usable in the mechanisation and required only minor adjustments, which
I discuss. I then provide a full adequacy proof, where I do not follow
Launchbury’s outline directly, but find a more elegant and direct proof.
Parts of this chapter, in particular the adequacy proof, has been submitted
to the Journal of Functional Programming [Bre15c].

Dedicated sections explicate the differences to Launchbury’s work, serv-
ing two purposes: The reasons for deviation can be educational to some-
one attempting a similar formalisation. Furthermore they are checklists
when combining this work with other Launchbury-based developments.

Finally, in preparation of Chapter 4, I extend the semantics and the
proofs with a simple base type, and introduce a corresponding small-step
semantics.

2.1 Launchbury’s semantics

Launchbury defines a semantics for the simple untyped lambda calculus
given in Fig. 5, consisting of variables, lambda abstractions, applications
and mutually recursive bindings.
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The set of free variables of an expression e is denoted by fv e; I over-
load this notation and use fv with arguments of other types that may
contain variable names. For example for tuples (or, equivalently, multiple
arguments), we have fv(Γ, e) = fv Γ ∪ fv e.

A variable x is fresh with regard to an expression e (or a similar object)
if x /∈ fv e. The expression e with every free occurrence of x replaced by y
is written as e[x := y].

I equate alpha-equivalent lambda abstractions (ńx. x = ńy. y) and the
bound variable is not part of the set of free variables (fv(ńx. y x) = {y}).
let bindings are handled likewise. The theoretical foundation used is
nominal logic (see Section 1.6). This does impose a few well-formedness
side conditions, such as equivariance of definitions over expressions. I
skip them in this presentation, and do so with good conscience, as they
have been covered in the machine-checked proofs.

Note that the term on the right hand side of an application has to be a
variable. A general lambda term of the form e1 e2 would have to be pre-
processed to let x = e2 in e1 x before it can be handled by my semantics.
This restriction simplifies the semantics, as all bindings on the heap are
created by a let expression and we do not have to ensure separately that
the evaluation of a function’s argument is shared. This is a standard trick
applied by Launchbury [Lau93] and others [Ses97; GS01; HH14]. In some
of the less formal parts of this thesis, e.g. in examples, I occasionally use
expressions as arguments in the interest of readability. This should be
understood as a shorthand for the proper, let-bound form.

2.1.1 Natural semantics

Launchbury gives meaning to this language by way of a natural semantics.
I present his semantics with minor adjustments due to Sestoft and myself,
and explain these differences in Section 2.1.3.

The semantics is given by a relation

Γ : e ⇓L ∆ : v

with the intuition that the expression e within the heap Γ reduces to the
value v, while modifying the heap to ∆, while avoiding the names in the
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Γ : ńx. e ⇓L Γ : ńx. e
LAM

Γ : e ⇓L ∆ : ńy. e′ ∆ : e′[y := x] ⇓L Θ : v
Γ : e x ⇓L Θ : v

APP

Γ : e ⇓L∪{x} ∆ : v

x 7→ e, Γ : x ⇓L x 7→ v, ∆ : v
VAR

dom∆ ∩ fv(Γ, L) = {} ∆, Γ : e ⇓L Θ : v
Γ : let ∆ in e ⇓L Θ : v

LET

Figure 6: Launchbury natural semantics, as revised by Sestoft

set L. The relation is defined inductively by the rules in Fig. 6, which obey
the following naming conventions:

Γ, ∆, Θ ∈ Heap = Var ⇀ Exp

v ∈ Val ::= ńx. e

A heap is a partial function from variables to expressions (Var ⇀ Exp),
and usually represented by Γ, ∆ or Θ. The same type is used for the list
of bindings in a let. The domain of a heap Γ, written dom Γ, is the set of
variables bound by the heap.

In contrast to expressions, heaps are not alpha-equated, so we have
dom Γ ⊆ fv Γ. I write x 7→ e for the singleton heap and use commas to
combine heaps with distinct domains.

A v represents a value, i.e. an expression in weak head normal form.
So far, the only values are lambda abstractions; this will change when I
add Booleans in Section 2.4.2. I use the predicate isVal e to denote that the
expression e is a value.

The first rule, LAM, does not actually “do” anything: Expression and
heap on the left and on the right are the same. This rule thus states that to
evaluate an expression that is already a value, nothing has to be done.

The second rule, APP, handles evaluation of an application. As we
want to model lazy evaluation, first the called expression e is evaluated.
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The argument x, which by our syntactic restriction is just a variable, is
then substituted into the the resulting lambda abstracted expression, and
evaluation continues with that. Observe that the argument itself is not
necessarily evaluated.

Rule VAR takes care of evaluating a variable x. This is only possible if it
is mentioned in the heap.

During the evaluation of the expression e, the binding x 7→ e is removed
from the heap: This way, if the evaluation of e would itself require the
evaluation of x, the VAR rule does not apply over and over again, but
rather the inference is stuck. An inference algorithm derived from these
rules would exhibit the same behaviour as a runtime for lazy functional
programs that sports blackholing, where a thunk under evaluation is re-
placed by a so-called blackhole which, if evaluated, aborts the program
[Pey92].

This rule also implements sharing: After having evaluated e to a value v,
this is not only returned as the result of the computation, but also added
to the resulting heap as the new binding for x. This updating of x ensures
that any further evaluation of x will immediately return with its once
evaluated value.

The final rule, LET, implements let-bindings, which may be mutually
recursive, simply by moving them to the heap. The let-expression itself
represents an alpha-equivalency class and hence does not have names
for the bound values, so it is the application of this rule that actually
determines dom∆, and the first assumption of the rule ensures that these
variables do not clash with existing ones.

The set L was not present in Launchbury’s rules. It was added by Sestoft
[Ses97] to keep track of variables that must be avoided when choosing
new names in the LET rule, but would otherwise not be present in the
judgement any more, because they were blackholed by VAR. I explain
this modification in greater detail in Section 2.1.3).

The semantics has a few noteworthy properties, which I describe in the
following lemmas.

Evaluation does not forget bindings:

Lemma 1
If Γ : e ⇓L ∆ : v then dom Γ ⊆ dom∆.



38 Formalizing Launchbury’s natural semantics

Proof
by induction on the derivation of Γ : e ⇓L ∆ : v. �

Furthermore, names that appear as new bindings on the heap do not
clash with any names in the set L:

Lemma 2
If Γ : e ⇓L ∆ : v then (dom∆ \ dom Γ) ∩ L = {}.

Proof
by induction on the derivation of Γ : e ⇓L ∆ : v. In the case for let
expressions, we use that the names chosen for the bound variables are
fresh with regard to L, as dom∆ ∩ fv(Γ, e, L) = {}. �

I consider a judgement Γ : e ⇓L ∆ : v to be closed if fv(Γ, e) ⊆ dom Γ ∪ L,
i.e. all occurring names are either bound in the heap, or explicitly listed in
the set L of names to avoid.

Note that this property is preserved by the semantics in the following
sense:

Lemma 3
If Γ : e ⇓L ∆ : v holds and fv(Γ, e) ⊆ dom Γ ∪ L, then fv(∆, v) ⊆ dom∆ ∪ L.

Proof
In light of Lemma 1, this follows from: If Γ : e ⇓L ∆ : v holds, and x′ is
fresh with regard to Γ and e, then x′ is either also fresh with regard to ∆
and v, or x′ appears in dom∆, in which case x′ /∈ L must hold. I prove
this by induction on the derivation.

Case: LAM

This case is trivial.

Case: APP

By the first induction hypothesis, there are two subcases to consider:

• The variable x′ is still fresh with regard to ∆ and ńy. e′. In order to
invoke the second induction hypothesis, we need to show that x′

is fresh with regard to e′[y := x]. This is the case, as x′ 6= x, by the
assumption, and either x′ = y, or x is fresh with regard to e′.
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• The variable x′ appears in dom∆ and is not in L. By Lemma 1, it
then also appears in domΘ.

Case: VAR

As x′ is fresh with regard to (x 7→ e, Γ) and x, we have x′ 6= x. Fur-
thermore, x′ is also fresh with regard to Γ and e, so we can invoke the
induction hypothesis.

• If x′ is still fresh with regard to ∆ and v, then it is also fresh with
regard to (x 7→ v, ∆), as x′ 6= x.

• If x′ ∈ dom∆ and x′ /∈ L ∪ {x}, we obviously also have that
x′ ∈ dom (x 7→ v, ∆) and x /∈ L.

Case: LET

As this case introduces new names on the heap, this decides what side of
the disjunction in the proposition x′ ends up in.

• If x′ ∈ dom∆, then x′ ∈ dom (∆, Γ), and by Lemma 1, x′ ∈ domΘ.
Also, by the freshness condition on LET, x′ /∈ L.

• Otherwise, x is fresh with regard to (∆, Γ) and e by the assumption,
so we can invoke the induction hypothesis. �

2.1.2 Denotational semantics

In order to show that the natural semantics behaves as expected, Launch-
bury defines a standard denotational semantics for expressions and heaps,
following Abramsky [Abr90]. The semantic domain Value is the initial
solution to the domain equation

Value = (Value→ Value)⊥,

in the category of pointed chain-complete partial orders with continuous
functions. In this domain, we can distinguish ⊥ from λx.⊥.

The injection
Fn(_) : (Value→ Value)→ Value
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Jńx. eKρ := Fn(λv.JeKρt[x 7→v])

Je xKρ := JeKρ ↓Fn ρ x

JxKρ := ρ x

Jlet ∆ in eKρ := JeK{{∆}}ρ.

Figure 7: The standard denotational semantics

turns values of type Value→ Value into non-bottom values of Value, while
the projection

_ ↓Fn _: Value→ Value→ Value

does the converse, defined as

v1 ↓Fn v2 =

{
f v2 if v1 = Fn( f )
⊥ otherwise.

The partial order v on Value is the usual, with Fn( f ) v Fn(g) if
∀x. f x v g x for f , g ∈ Value→ Value, and ⊥ below everything.

A semantic environment maps variables to values,

ρ ∈ Env = Var→ Value,

and the initial environment ⊥maps all variables to ⊥. Environments are
ordered by lifting the order on Value pointwise.

With the domain of an environment ρ, written dom ρ, I denote the set of
variables that are not mapped to ⊥.

The environment ρ|S, where S is a set of variables, is the restriction of ρ
to S:

(ρ|S) x =

{
ρ x, if x ∈ S
⊥ if x 6∈ S.

The environment ρ \ S is defined as the restriction of ρ to the complement
of S, i.e. ρ \ S := ρ|Var\S.

The semantics of expressions and heaps are mutually recursive. The
meaning of an expression e ∈ Exp in an environment ρ ∈ Env is written
as JeKρ ∈ Value and is defined by the equations in Fig. 7.
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We can map this function over a heap to obtain an environment:

JΓKρ x :=

{
JeKρ, if (x 7→ e) ∈ Γ
⊥ if x /∈ dom Γ.

The semantics of a heap Γ ∈ Heap in an environment ρ, written {{Γ}}ρ ∈
Env, is then obtained as a least fixed point:

{{Γ}}ρ = (µρ′. ρ++dom ΓJΓKρ′)

where

(ρ++S ρ′) x :=

{
ρ x, if x /∈ S
ρ′ x, if x ∈ S

is a restricted update operator.
The least fixed point exists, as all involved operations are monotone

and continuous, and by unrolling the fixed point once, we can see

Lemma 4 (Application of the heap semantics)

({{Γ}}ρ) x =

{
JeK{{Γ}}ρ, if (x 7→ e) ∈ Γ
ρ x, if x /∈ dom Γ.

The following substitution lemma plays an important role in finding
a more direct proof of adequacy, but is also required for the correctness
proof, as performed by Launchbury:

Lemma 5 (Semantics of substitution)

JeKρ(y 7→ρ x) = Je[y := x]Kρ.

Proof
We first show ∀ρ. ρ x = ρ y =⇒ {{e}}ρ = {{e[y := x]}}ρ by induction on e,
using parallel fixed-point induction in the case for let. This allows us to
calculate

JeKρ(y 7→ρ x) = Je[y := x]Kρ(y 7→ρ x) { as ρ(y 7→ ρ x) x = ρ(y 7→ ρ x) y }

= Je[y := x]Kρ { as y /∈ fv(e[y := x]). } �

I sometimes write {{Γ}} instead of {{Γ}}⊥. In an expression {{Γ}}({{∆}}ρ)
I omit the parentheses and write {{Γ}}{{∆}}ρ.
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2.1.3 Discussions of modifications

It is rare that a formal system developed with pen and on paper can be
formalised to the letter, partly because of vagueness (what, exactly, is a
“completely” fresh variable?), partly because of formalisation convenience,
and partly because the stated facts – even if morally correct – are wrong
when read scrupulously. Launchbury’s work is no exception. This section
discusses the required divergence from Launchbury’s work.

Naming

Getting the naming issues right is one of the major issues when formal-
ising anything involving bound variables. In Launchbury’s work, the
names are manifestly part of the syntax, i.e. ńx. x 6= ńy. y, and his rules
involve explicit renaming of bound variables to fresh ones in the rule VAR.
His definition of freshness is a global one, so the validity of a derivation
using VAR depends on everything around it. This is morally what we
want, but very impractical.

Sestoft [Ses97] noticed this problem and fixed it by adding a set L of
variables to the judgement, so that every variable to be avoided occurs
somewhere in Γ, e, or L. Instead of renaming all bound variables in the
rule VAR, he chooses fresh names for the new heap bindings in the rule
LET.

I build on that, but go one step further and completely avoid bound
names in the expressions, i.e. ńx. x = ńy. y. I still have them in the syntax,
of course, but these are just representatives of an α-equivalency class.
Nominal logic (cf. Section 1.6) forms the formal foundation for this. So
in my rule LET I do not have to rename the variables, but simply may
assume that the variables used in the representation of the let-expression
are sufficiently fresh.

The names of bindings on the heap are not abstracted away in that
manner; this follows [SHO12].

Closed judgements

Launchbury deliberately allows non-closed configurations in his deriva-
tions, i.e. configurations with free variables in the terms that have no cor-
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responding binding on the heap. This is a necessity, as rule VAR models
blackholing by removing a binding from the heap during its evaluation.

With the addition of the set of variables to avoid, which will always
contain such variables, the question of whether non-closed configurations
should be allowed can be revisited. And indeed, Sestoft defines the notion
of L-good configurations, where all free variables are either bound on the
heap, or contained in L. He shows that this property is preserved by the
operational semantics and subsequently considers only L-good config-
urations. I follow this example with my definition of closed judgements.
Threading the closedness requirement through a proof by rule induction
is a typical chore contributing to the overhead of a machine-checked
formalisation.

Join vs. update

Launchbury specifies his denotational semantics using a binary operation
t on environments:

{{Γ}}ρ = (µρ′. ρ t JΓKρ′)

He does not define it explicitly, but the statements in his Section 5.2.1
leave no doubt that he indeed intended this operation to denote the least
upper bound of its arguments, as one would expect. Unfortunately, with
this definition, his Theorem 2 is false.

The proposition of the theorem (which corresponds to Theorem 2 in
this document) is

Γ : e ⇓L ∆ : v =⇒ ∀ρ ∈ Env. JeK{{Γ}}ρ = JvK{{∆}}ρ

and a counter example is given by

e = x,

v = (ńa. let b = b in b),

Γ = ∆ = (x 7→ v), and

ρ = (x 7→ Fn(λ_.Fn(λx.x))).
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Note that the denotation of v is Fn(λ_.⊥) in every environment. We have
Γ : e ⇓{} ∆ : v, so according to the theorem, JeK{{Γ}}ρ = JvK{{∆}}ρ should
hold, but the following calculation show that it does not:

JeK{{Γ}}ρ =
(
{{Γ}}ρ

)
x

= ρ x t JvK{{Γ}}ρ
= Fn(λ_.Fn(λx.x)) t Fn(λ_.⊥)
= Fn(λ_.Fn(λx.x) t⊥)
= Fn(λ_.Fn(λx.x))

6= Fn(λ_.⊥)
= JvK{{∆}}ρ.

The crucial property of the counter-example is that ρ contains compati-
ble, but better information for a variable also bound in Γ. The mistake in
his correctness proof is in the step ({{x 7→ v, ∆}}ρ) x = JvK{{x 7→v,∆}}ρ in the
case for VAR, which should be ({{x 7→ v, ∆}}ρ) x = JvK{{x 7→v,∆}}ρ t ρ x.

Intuitively, such rogue ρ are not relevant for a proof of the main The-
orem 1. Nevertheless, this issue needs to be fixed before attempting a
formal proof. One possible fix is to replace t by a right-sided update
operation that just throws away information from the left argument for
those variables bound on the right. The syntax ρ++S ρ′ denotes this
operation. If that is used instead of the least upper bound, then the proof
goes through in full rigour.

It is slightly annoying having to specify the set S in this operation ex-
plicitly, as it is usually clear “from the context”: Morally, it is the set of
variables that the object on the right talks about. But as environments,
i.e. total functions from Var → Value, do not distinguish between vari-
ables not mentioned at all and variables mentioned, but bound to ⊥, this
information is not easily exploitable in a formal setting.

For the same reason Theorem 2 uses the more explicit equality between
restricted environments instead of Launchbury’s ordering ≤ on environ-
ments. I elaborate on this in Section 2.2.1.
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2.2 Correctness

The main correctness theorem for the natural semantics is

Theorem 1 (Correctness)
If Γ : e ⇓L ∆ : v holds and is closed, then

JeK{{Γ}} = JvK{{∆}}.

A proof by rule induction requires the following generalisation:

Theorem 2 (Correctness, generalized)
If Γ : e ⇓L ∆ : v holds and is closed, then for all environments ρ ∈ Env, we
have

JeK{{Γ}}ρ = JvK{{∆}}ρ and ({{Γ}}ρ)|dom Γ = ({{∆}}ρ)|dom Γ.

The proof follows Launchbury’s steps, but differs in some details. In
the interest of a self-contained presentation, I give the full proof here. Two
technical lemmas used in the proof are stated and proved subsequently.

For clarity, ρ =|S ρ′ abbreviates ρ|S = ρ′|S.

Proof
by induction on the derivation of Γ : e ⇓L ∆ : v. Note that in such a
derivation, all occurring judgements are closed.

Case: LAM

This case is trivial.

Case: APP

The induction hypotheses are JeK{{Γ}}ρ = Jńy. e′K{{∆}}ρ and {{Γ}}ρ =|dom Γ

{{∆}}ρ as well as Je′[y := x]K{{∆}}ρ = JvK{{Θ}}ρ and {{∆}}ρ =|dom∆
{{Θ}}ρ.

We have {{Γ}}ρ x = {{∆}}ρ x: If x ∈ dom Γ, this follows from the
induction hypothesis. Otherwise, we know x ∈ L, as the judgement is
closed, and the new names bound in ∆ avoid L, so we have ρ x on both
sides.

While the second part follows from the corresponding induction hy-
potheses and dom Γ ⊆ dom∆ (Lemma 1), the first part is a simple calcula-
tion:
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Je xK{{Γ}}ρ = JeK{{Γ}}ρ ↓Fn {{Γ}}ρ x

{ by the denotation of application }

= Jńy. e′K{{∆}}ρ ↓Fn {{Γ}}ρ x

{ by the induction hypothesis }

= Jńy. e′K{{∆}}ρ ↓Fn {{∆}}ρ x

{ see above }

= Je′K({{∆}}ρ)(y 7→{{∆}}ρ x)

{ by the denotation of lambda abstraction }

= Je′[y := x]K{{∆}}ρ
{ by Lemma 5 }

= JvK{{Θ}}ρ
{ by the induction hypothesis }

Case: VAR

We know that JeK{{Γ}}ρ′ = JvK{{∆}}ρ′ and {{Γ}}ρ′ =|dom Γ
{{∆}}ρ′ for all envi-

ronments ρ′.
We begin with the second part:

{{x 7→ e, Γ}}ρ = µρ′. (ρ++dom Γ{{Γ}}ρ′)[x 7→ JeK{{Γ}}ρ′ ]

{ by the following Lemma 6 }

= µρ′. (ρ++dom Γ{{Γ}}ρ′)[x 7→ JvK{{∆}}ρ′ ]

{
by the induction hypothesis. Note that
we invoke it for ρ′ with ρ′ 6= ρ! }

=|dom (x 7→e,Γ)
µρ′. (ρ++dom∆{{∆}}ρ′)[x 7→ JvK{{∆}}ρ′ ]

{ by the induction hypothesis; see below }

= {{x 7→ v, ∆}}ρ
{ again by Lemma 6 }

The second but last step is quite technical, as the |dom (x 7→e,Γ) operator
needs to commute with the fixed-point operator. This goes through by par-
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allel fixed-point induction if we first generalise it to |Var\dom∆∪ dom (x 7→e,Γ),
the restriction to the complement of the new variables added to the heap
during evaluation of x.

The first part now follows from the second part:

JxK{{x 7→e,Γ}}ρ = ({{x 7→ e, Γ}}ρ) x

= ({{x 7→ v, ∆}}ρ) x

{ by the second part and x ∈ dom (x 7→ e, Γ) }

= JvK{{x 7→v,∆}}ρ

{ by Lemma 4. }

Case: LET

We know that JeK{{∆,Γ}}ρ = JvK{{Θ}}ρ and {{∆, Γ}}ρ =|dom (∆,Γ)
{{Θ}}ρ. For the

first part we have

Jlet ∆ in eK{{Γ}}ρ = JeK{{∆}}{{Γ}}ρ { by the denotation of let-expressions }

= JeK{{∆,Γ}}ρ { by the following Lemma 7 }

= JvK{{Θ}}ρ { by the induction hypothesis }

and for the second part we have

{{Γ}}ρ =|dom Γ
{{∆}}{{Γ}}ρ { because dom∆ are fresh }

= {{∆, Γ}}ρ { again by Lemma 7 }

=|dom (∆,Γ)
{{Θ}}ρ. { by the induction hypothesis. } �

In the case for VAR, I switched from the usual, simultaneous definition
of the heap semantics to an iterative one, in order to be able to make use
of the induction hypothesis:

Lemma 6 (Iterative definition of the heap semantics)

{{x 7→ e, Γ}}ρ = µρ′.
(
(ρ++dom Γ {{Γ}}ρ′)[x 7→ JeK{{Γ}}ρ′ ]

)
.

A corresponding lemma can be found in Launchbury [Lau93], but
without proof. As the proof involves some delicate juggling of fixed
points, I include it here in detail:
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Proof
Let

L = λρ′.
(
ρ++dom (x 7→e,Γ)Jx 7→ e, ΓKρ′

)
be the functorial of the fixed point on the left hand side, and

R = λρ′.
(
(ρ++dom Γ {{Γ}}ρ′)[x 7→ JeK{{Γ}}ρ′ ]

)
.

the functorial of the fixed point on the right hand side.
By Lemma 4, we have

(µL) y = Je′KµL for y 7→ e′ ∈ dom Γ, (1)

(µL) x = JeKµL, (2)

(µL) y = ρ y for y /∈ dom (x 7→ e, Γ). (3)

Similarly, by unrolling the fixed points, we have

(µR) y = Je′K{{Γ}}(µR) for y 7→ e′ ∈ dom Γ, (4)

(µR) x = JeK{{Γ}}(µR), (5)

(µR) y = ρ y for y /∈ dom (x 7→ e, Γ), (6)

and also for ρ′ ∈ Env (in particular for ρ′ = (µL) and ρ′ = (µR)), again
using Lemma 4,

({{Γ}}ρ′) y = Je′K{{Γ}}ρ′ for y 7→ e′ ∈ dom Γ, (7)

({{Γ}}ρ′) y = ρ′ y for y /∈ dom Γ. (8)

We obtain

{{Γ}}(µR) = (µR) (9)

from comparing (4)–(6) with (7) and (8). We can also show

{{Γ}}(µL) = (µL), (10)

by antisymmetry of v and using that least fixed points are least pre-fixed
points:
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v: We need to show that (µL) ++dom ΓJΓK(µL) v (µL), which follows
from (1).

w: We need to show that

{{Γ}}(µL) ++dom (x 7→e,Γ)Jx 7→ e, ΓK{{Γ}}(µL) v {{Γ}}(µL).

For dom Γ, this follows from (7), so we show JeK{{Γ}}(µL) v (µL) x =
JeK(µL), which follows from the monotonicity of JeK_ and case v.

To show the conclusion of the lemma, i.e. (µL) = (µR), we again use
antisymmetry and the leastness of least fixed points:

v: We need to show that L (µR) = µR, i.e.

– ρ y = (µR) y for y /∈ dom (x 7→ e, Γ), which follows from (6),
– Je′KµR = (µR) y for y 7→ e′ ∈ Γ, which follows from (4) and (9)

and
– JeKµR = (µR) x, which follows from (5) and (9).

w: Now we have to show that R (µL) = (µL), i.e.

– ρ y = (µL) y for y /∈ dom (x 7→ e, Γ), which follows from (3),
– Je′K{{Γ}}(µL) = (µL) y for y 7→ e′ ∈ Γ, which follows from (1)

and (10), and
– JeK{{Γ}}(µL) = (µL) x, which follows from (2) and (10). �

The final lemma required for the correctness proof shows that the
denotation of a set of bindings with only fresh variables can be merged
with the heap it was defined over:

Lemma 7 (Merging the heap semantics)
If dom∆ is fresh with regard to Γ and ρ, then

{{∆}}{{Γ}}ρ = {{∆, Γ}}ρ.

Proof
We use the antisymmetry of v, and the leastness of least fixed points.

v: We need to show that {{Γ}}ρ++dom∆J∆K{{∆,Γ}}ρ = {{∆, Γ}}ρ, which
we verify pointwise.
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– For x ∈ dom∆, this follows directly from Lemma 4.
– For x /∈ dom∆, this holds as the variables bound in ∆ are fresh,

so the bindings in {{Γ}}ρ keep their semantics.

w: We need to show that ρ++dom (∆,Γ)J∆, ΓK{{∆}}{{Γ}}ρ = {{∆}}{{Γ}}ρ.

– For x ∈ dom∆, this follows from unrolling the fixed point on
the right hand side once.

– For x 7→ e ∈ dom Γ (and hence x /∈ dom∆), we have

(ρ++dom (∆,Γ)J∆, ΓK{{∆}}{{Γ}}ρ) x

= JeK{{∆}}{{Γ}}ρ
{ by Lemma 4 }

= JeK{{Γ}}ρ
{ because dom∆ is fresh with regard to e }

= ({{Γ}}ρ) x

{ by unrolling the fixed point }

= (J∆K{{Γ}}ρ) x

{ because x /∈ dom∆ and Lemma 4. }

– For x /∈ dom (∆, Γ), we have ρ x on both sides. �

2.2.1 Discussions of modifications

My main Theorem 1 and the generalisation in Theorem 2 differ from
Launchbury’s corresponding Theorem 2. The additional requirement that
the judgements are closed has already been discussed in Section 2.1.3.

Furthermore, the second part of Theorem 2 is phrased differently.
Launchbury states {{Γ}}ρ ≤ {{∆}}ρ where ρ ≤ ρ′ is defined as

∀x. ρ x 6= ⊥ =⇒ ρ x = ρ′ x,

i.e. ρ′ agrees with ρ on all variables that have a meaning in ρ. The issue
with this definition is that there are two reasons why {{Γ}}ρ x = ⊥ can
hold: Either x /∈ dom Γ, or x ∈ dom Γ, but bound to a diverging value.
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Only the first case is intended here, and actually ≤ is used as if only
that case can happen, e.g. in the treatment of VAR in the correctness
proof. I therefore avoid the problematic ≤ relation and explicitly show
{{Γ}}ρ =|dom Γ

{{∆}}ρ.

2.3 Adequacy

A correctness theorem for a natural semantics is not worth much on its
own. Imagine a mistake in side condition of the LET rule that accidentally
prevents any judgement to be derived for programs with a let – the
correctness theorem would still hold.

It is therefore desirable to prove that all programs that have a mean-
ing, in this case according to the denotational semantics, indeed have a
derivation:

Theorem 3 (Adequacy)
For all expressions e, heap Γ and set of variables L, if JeK{{Γ}} 6= ⊥, then
there exists a heap ∆ and a value v so that Γ : e ⇓L ∆ : v.

The proof uses a modified denotational semantics that keeps track
of the number of steps required to determine the non-bottomness of e,
which I introduce in the next subsection. I will then show that the natural
semantics is adequate with regard to the modified denotational semantics,
and make the connection by showing how the two denotational semantics
relate.

2.3.1 The resourced denotational semantics

The domain used to count the resources is a solution to the equation
C = C⊥. The lifting is done by the injection function C : C → C, so the
elements are

⊥ @ C ⊥ @ C (C ⊥) @ · · · @ Cn @ · · · @ C∞

This is isomorphic to the extended naturals. I use r for variables ranging
over C. The notation f |r restricts a function f with domain C to take at
most r resources: ( f |r) r′ := f (r u r′).
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NJeKσ ⊥ := ⊥
NJńx. eKσ (C r) := CFn (λv.NJeKσt[x 7→v]|r)
NJe xKσ (C r) := ((NJeKσ r) ↓CFn (σ x)|r) r

NJxKσ (C r) := σ x r

NJlet ∆ in eKσ (C r) := NJeK{{∆}}σ r

Figure 8: The resourced denotational semantics

The resourced semantics NJeKσ of an expression e in environment σ
is now a function which takes an additional argument r of type C to
indicate the number of steps the semantics is still allowed to perform:
Every recursive call in the definition of NJeKσ r peels one application of C
off r until none are left.

The type of the environment changes as well: It is now Var → (C →
CValue). I use σ for variables ranging over such resourced environments.

The intuition is that if we pass in an infinite number of resources, the
two semantics coincide:

∀x. ρ x = σ x C∞ =⇒ JeKρ = NJeKσ C∞,

as Launchbury puts it. While this intuition is intuitively true, it cannot
be stated that naively: Because the semantics of an expression is now a
function taking a C, this needs to be reflected in the domain equation,
which therefore constructs a different domain, as observed by Sánchez-Gil
et al.

CValue = ((C→ CValue)→ (C→ CValue))⊥

The lifting and the projection functions are hence

CFn (_) : (C→ CValue)→ (C→ CValue)→ CValue

_ ↓CFn _: CValue→ (C→ CValue)→ (C→ CValue).

The definition of the resourced semantics, given in Fig. 8, resembles
the definition of the standard semantics with some additional resource
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bookkeeping. The semantics of the heap is defined as before:

N{{Γ}}σ := (µσ′. σ ++dom ΓNJΓKσ′).

Given the similarity between this semantics and the standard semantics,
it is not surprising that Lemmas 4, 5, 6 and 7 hold as well. In fact, in the
formal development, they are stated and proved abstractly, using locales
[Bal14] as a modularisation tool, and then simply instantiated for both
variants of the semantics. I describe this approach in Section 2.6.3.

The correctness lemma needs some adjustments, as a more evaluated
expression requires fewer resources. It therefore only provides an inequal-
ity:

Lemma 8 (Correctness, resourced)
If Γ : e ⇓L ∆ : v holds and is closed, then for all resourced environments σ
we have NJeK{{Γ}}σ v NJvK{{∆}}σ and (N{{Γ}}σ)|dom Γ v (N{{∆}}σ)|dom Γ.

Proof
Analogously to the proof of Theorem 2. �

2.3.2 Denotational black holes

The major difficulty in proving computational adequacy is the blackhol-
ing behaviour of the operational semantics: During the evaluation of a
variable x the corresponding binding is removed from the heap. Oper-
ationally, this is desirable: If the variable is called again during its own
evaluation, we would have an infinite loop anyways.

But obviously, the variable is still mentioned in the current config-
uration, and simply removing the binding will change the denotation
of the configuration in unwanted ways: There is no hope of proving
NJeKN{{x 7→e,Γ}} = NJeKN{{Γ}}.

But a weaker statement holds, which reflects the idea of “not using x
during its own evaluation” more closely:

Lemma 9 (Denotational blackholing)

NJeKN{{x 7→e,Γ}}r 6= ⊥ =⇒ NJeKN{{Γ}}r 6= ⊥
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This is a consequence of the following lemma, which states that during
the evaluation of an expression using finite resources, only fewer resources
will be passed to the members of the environment (which are of type
C→ CValue):

Lemma 10

NJeKσ|C r = NJeK(σ|r)|C r

where σ|r is an abbreviation for λx.(σ x)|r.

Proof
by induction on the expression e.

In order to show NJeKσ|C r = NJeK(σ|r)|C r it suffices to show that
NJeKσ (C r′) = NJeK(σ|r) (C r′) for any r′ v r.

The critical case is the one for variables, where e = x. We have

NJxKσ (C r′) = σ x r′ = (σ x|r) r′ = NJxK(σ|r) (C r′)

as r′ v r.
In the other cases, the result follows from the fact that nested expres-

sions are evaluated with r′ resources or, in the case of lambda abstraction,
wrapped inside a |r′ restriction operator.

For the case of let, a related lemma for heaps needs to be proven by par-
allel fixed-point induction, namely ∀r. (N{{Γ}}σ)|r = (N{{Γ}}(σ|r))|r. �

Equipped with this lemma, we can begin the

Proof (of Lemma 9)
Let r′ be the least resource such that NJeKN{{x 7→e,Γ}}(C r′) 6= ⊥. Such an
r′ exists by the assumption, and C r′ v r, and by the continuity of the
semantics r′ 6= C∞. In particular, NJeKN{{x 7→e,Γ}}r′ = ⊥.

We first show
N{{x 7→ e, Γ}}|r′ v N{{Γ}} (∗)

by bounded fixed-point induction. So given an arbitrary environment
σ v N{{x 7→ e, Γ}}, we may assume σ|r′ v N{{Γ}} and have to prove
NJx 7→ e, ΓKσ|r′ v N{{Γ}}, which we do point-wise:
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For y 7→ e′ ∈ Γ, this follows from

NJx 7→ e, ΓKσ|r′ y = NJe′Kσ|r′
= NJe′Kσ|r′ |r′ { by Lemma 10 }

v NJe′Kσ|r′

v NJe′KN{{Γ}} { by the induction hypothesis }

= N{{Γ}} y { by Lemma 4 }

while for x, this follows from

NJx 7→ e, ΓKσ|r′ x = NJeKσ|r′
v NJeKN{{x 7→e,Γ}}|r′ { using σ v N{{x 7→ e, Γ}} }

= ⊥ { by the choice of r′ }

= N{{Γ}} x { as x /∈ dom Γ. }

So we can conclude the proof with

⊥ @ NJeKN{{x 7→e,Γ}}(C r′) { by the choice of r′ }

= NJeKN{{x 7→e,Γ}}|r′ (C r′) { by Lemma 10 }

v NJeKN{{Γ}}(C r′) { by (∗) }

v NJeKN{{Γ}}r { as C r′ v r } �

2.3.3 Resourced adequacy

Now the necessary tools to handle blackholing are in place for the ade-
quacy proof with regard to the resourced semantics.

Lemma 11 (Resourced semantics adequacy)
For all e, Γ and L, if NJeKN{{Γ}} r 6= ⊥, then there exists ∆ and v so that
Γ : e ⇓L ∆ : v.

Proof
Because the semantics is continuous, it suffices to show this for r = Cn ⊥,
and perform induction on this n, with arbitrary e, Γ and L.
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The case r = C0 ⊥ = ⊥ is vacuously true, as NJeKN{{Γ}} ⊥ = ⊥.
For the inductive case assume that the lemma holds for r, and that
NJeKN{{Γ}} (C r) 6= ⊥. We proceed by case analysis on the expression e.
Case: e = x.
From the assumption we know that Γ = x 7→ e′, Γ′ for some e′ and
Γ′, as otherwise the denotation would be bottom, and furthermore that
NJe′KN{{x 7→e′ ,Γ′}} r 6= ⊥

With Lemma 9 this implies NJe′KN{{Γ′}} r 6= ⊥, so the induction hypoth-
esis applies and provides ∆ and v with Γ′ : e′ ⇓L∪{x} ∆ : v. This implies
x 7→ e′, Γ′ : x ⇓L ∆ : v by rule VAR, as desired.
Case: e = e′ x.
Assume that fv(Γ, e′) ⊆ L. No generality is lost here: If a derivation in
the natural semantics with a larger set of variables to avoid than required
holds, then the same derivation is also valid with the required set L.

From the assumption we know (NJe′KN{{Γ}} r ↓CFn (N{{Γ}} x)|r) r 6= ⊥.
In particular (NJe′KN{{Γ}} r) 6= ⊥, so by the induction hypothesis we have
∆, y and e′′ with Γ : e′ ⇓L ∆ : ńy. e′′, the first hypothesis of APP.

This judgement is closed by the extra assumption, so Lemma 8 ensures
that NJe′KN{{Γ}} v NJńy. e′′KN{{∆}} and N{{Γ}} v N{{∆}}. We can insert
that into the inequality above to calculate

⊥ @
(
NJe′KN{{Γ}} r ↓CFn (N{{Γ}} x)|r

)
r

v
(
NJńy. e′′KN{{∆}} r ↓CFn (N{{∆}} x)|r

)
r

v
(
NJńy. e′′KN{{∆}} r ↓CFn N{{∆}} x

)
r

=
(
CFn (λv.NJe′′KN{{∆}}t[y 7→v]|r) ↓CFn N{{∆}} x

)
r

v
(
CFn (λv.NJe′′KN{{∆}}t[y 7→v]) ↓CFn N{{∆}} x

)
r

= NJe′′KN{{∆}}t[y 7→(N{{∆}} x)] r

= NJe′′[y := x]KN{{∆}} r { by Lemma 5 }

which, using the induction hypothesis again, provides us with Θ and
v so that the second hypothesis of APP, ∆ : e′′[y := x] ⇓L Θ : v, holds,
concluding this case.
Case: e = ńy. e′

This case follows immediately from rule LAM with ∆ = Γ and v = ńy. e′.
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Case: e = let ∆ in e′

We have

⊥ @ NJlet ∆ in e′KN{{Γ}} r

v NJe′KN{{∆}}N{{Γ}}
= NJe′KN{{∆,Γ}} { by Lemma 7 }

so we have Θ and v with ∆, Γ : e′ ⇓L Θ : v and hence Γ : let ∆ in e′ ⇓L Θ : v
by rule LET, as desired. �

2.3.4 Relating the denotational semantics

Lemma 11 is almost what we want, but it talks about the resourced
denotational semantics. In order to obtain that result for the standard
denotational semantics, we need to relate these two semantics. We cannot
simply equate them, as they have different denotational domains Value
and C→ CValue. So we are looking for a relation /. between Value and
CValue that expresses the intuition that they behave the same, if the latter
is given infinite resources. In particular, it is specified by the two equations

⊥ /. ⊥

and

(∀x y. x /. y C∞ =⇒ f x /. g y C∞) ⇐⇒ Fn( f ) /. CFn (g).

Unfortunately, this is not admissible as an inductive definition, as it
is self-referential in a non-monotone way, so the construction of this
relation is non-trivial. This was observed and performed by Sánchez-Gil
et al. [SHO11], and I have subsequently implemented this construction in
Isabelle.

I lift this relation to environments ρ ∈ Env and resourced environments
σ ∈ Var→ (C→ Value) by

ρ /.∗ σ ⇐⇒ ∀x. ρ x /. σ x C∞.
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This allows us to state precisely how the two denotational semantics
are related:

Lemma 12 (The denotational semantics are related)
For all environments ρ ∈ Env and σ ∈ Var → (C → Value) with ρ /.∗ σ,
we have

JeKρ /. NJeKσ C∞.

Proof
Intuitively, the proof is obvious: As we are only concerned with infinite
resources, all the resource counting added to the denotational semantics
becomes moot and the semantics are obviously related. A more rigorous
proof can be found in [SHO11] and in my formal verification. �

Corollary 13
For all heaps Γ, we have {{Γ}} /.∗ N{{Γ}}.

Proof
by parallel fixed-point induction and Lemma 12. �

I describe my Isabelle formalisation of [SHO11] in Section 2.6.4, includ-
ing the mistakes in the original work that I found and fixed.

2.3.5 Concluding the adequacy

With this in place, I can give the

Proof (of Theorem 3)
By Corollary 13 we have {{Γ}} /.∗ N{{Γ}}, and with Lemma 12 this
implies JeK{{Γ}} /. NJeKN{{Γ}} C∞.

With the assumption JeK{{Γ}} 6= ⊥ and the definition of /. this ensures
that NJeK{{Γ}} C∞ 6= ⊥, and we can apply Lemma 11, as desired. �

2.3.6 Discussions of modifications

My adequacy proof diverges quite a bit from Launchbury’s. As it is the
first rigorous proof, I discuss the differences in greater detail.

Launchbury performs the adequacy proof by introducing an alternative
natural semantics (ANS) that is closer to the denotational semantics than
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Γ : e ⇓L ∆ : ńy. e′ y 7→ x, ∆ : e′ ⇓L Θ : v
Γ : e x ⇓L Θ : v

APP’

x 7→ e, Γ : e ⇓L ∆ : v
x 7→ e, Γ : x ⇓L ∆ : v

VAR’

Figure 9: Launchbury’s alternative natural semantics

the original natural semantics (NS). He replaces the rules APP and VAR

with the two rules given in Fig. 9. There are three differences to be spotted:

1. In the rule for applications, instead of substituting the argument x
for the parameter y, the variable y is added to the heap, bound to x,
adding an indirection.

2. In the rule for variables, no update is performed: Even after x has
been evaluated to the value v, the binding x on the heap is not
modified at all.

3. Also in the rule for variables, no blackholing is performed: The
binding for x stays on the heap during its evaluation.

Without much ado, Launchbury states that the original natural se-
mantics and the alternative natural semantics are equivalent, which is
intuitively convincing. Unfortunately, it turned out that a rigorous proof
of this fact is highly non-trivial, as the actual structure of the heaps during
evaluation differs a lot: The modification to the application rule causes
many indirections, which need to be taken care of. Furthermore, the lack
of updates in the variable rules causes possibly complex, allocating ex-
pressions to be evaluated many times, each time adding further copies of
already existing expressions to the heap. On the other side, the updates in
the original semantics further obscure the relationship between the heaps
in the original and the alternative semantics. On top of all that add the
technical difficulty that is due to naming issues: Variables that are fresh
in one derivation might not be fresh in the other, and explicit renamings
need to be carried along.
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Sánchez-Gil et al. have attempted to perform this proof. They broke it
down into two smaller steps, going from the original semantics to one
with only the variable rule changes (called No-update natural semantics,
NNS), and from there to the ANS. So far, they have performed the second
step, the equivalence between NNS and ANS, in a pen-and-paper proof
[SHO15], while relation between NS and NNS has yet resisted a proper
proof [SHO14].

Considering these difficulties, I went a different path, and bridged the
differences not on the side of the natural semantics, but on the denota-
tional side, which turned out to work well:

1. The denotational semantics for lambda expressions changes the
environment (Jńx. eKρ := Fn(λv.JeKρt[x 7→v])), while the natural se-
mantics uses substitution into the expression: e[y := x].

This difference is easily bridged on the denotational side by the
substitution Lemma 5, which we need anyways for the correct-
ness proof. See the last line of the application case in the proof of
Lemma 11 for this step.

2. The removal of updates had surprisingly no effect on the adequacy
proof: The main chore of the adequacy proof is to produce evidence
for the assumptions of the corresponding natural semantics inference
rule, which is then, in the last step, applied to produce the desired
judgement. The removal of updates only changes the conclusion of
the rule, so the adequacy proof is unchanged.

Of course updates are not completely irrelevant, and they do affect
the adequacy proof indirectly. The adequacy proof uses the cor-
rectness theorem for the resourced natural semantics (Lemma 8),
and there the removal of updates from the semantics would make a
noticeable difference.

3. Finally, and most trickily, there is the issue of blackholing. I explain
my solution in Section 2.3.2, which works due to a small modifica-
tion to the resourced denotational semantics.
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My proof relies on the property that when we calculate the semantics
ofNJeKσ r, we never pass more than r resources to the values bound
in σ (Lemma 10). This concurs with the intuition about resources.

In Launchbury’s original definition of the resourced semantics, this
lemma does not hold: The equation for lambda expression ignores
the resources passed to it and returns a function involving the se-
mantics of the body:

NJńx. eKσ (C r) := CFn (λv.NJeKσt[x 7→v])

With that definition, NJńx. yKσ (C ⊥) = CFn (λ_. σ y), which de-
pends on σ y r for all r, contradicting Lemma 10.

Therefore, I restrict the argument of CFn (_) to cap any resources
passed to it at r. Analogously I adjust the equation for applications
to cap any resources passed to the value of the argument in the
environment, σ x.

These modifications do not affect the proof relating the two deno-
tational semantics (Lemma 12), as there we always pass infinite
resources, and |C∞ is the identity function.

2.4 Data type encodings and base values

Launchbury’s semantics is a typical core calculus used for research: Mini-
malistic as far as possible. Lambda abstraction, application and variables
are enough to have a full functional programming language, and let
expressions are added to talk explicitly about sharing and recursion.

2.4.1 Data types via Church encoding

Many other features of a typical programming language are omitted,
and that is fine, because they can often be modelled with these primi-
tive building blocks. For example data constructors and case analysis
are expressible using a suitable encoding, such as the Church encoding.
Consider tuples:
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The constructor of a product type can be implemented as

Pair = ńx y z. z x y

with the projection functions

fst = ńp. p (ńx y. x)

snd = ńp. p (ńx y. y).

For the purposes of analysing lazy evaluation, these encodings suffi-
ciently capture the behaviour of constructors. In particular, the semantics
is set up so that the arguments of such a constructor are evaluated at most
once, matching the expected behaviour of “real” constructors in a lazy
language.

Example
Consider the following code, which stores an unevaluated expression f x
in the Pair constructor, extracts it later and evaluates it twice.

let f = ńx y. y
p = Pair ( f x) ( f y)

in (fst p) (fst p) x

We expect the redex ( f x) to be evaluated only once, and indeed, this
is the case. But note that the example code does not actually follow my
syntax, because we have non-trivial expressions as arguments. By the
mentioned preprocessing, the code should actually be

let f = ńx y. y
p = (let y2 = f y in let y1 = f x in Pair y1 y2)

in let y3 = fst p in fst p y3 x

If this expression is called e, then we have [] : e ⇓{} ∆ : v where

∆ = f 7→ ńx y. y,

p 7→ ńz. z y1 y2,

y3 7→ ńy. y,

y2 7→ f y,

y1 7→ ńy. y,
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and v = x, and the pair now stores its first argument in its evaluated form,
while the second argument is still unevaluated. Tracing the complete
derivation of this judgement (which is a too large to be reproduced here)
we see that ( f x) is indeed evaluated only once. �

There is, however, a trait of “real” constructors and case analysis that is
not easily modelled by the Church encoding: With the Haskell code

case b of True → do this
False → do that

it is obvious that either do this or do that is executed, but not both. The
same cannot be said for the corresponding code in a Church encoding of
Booleans:

True = ńx y. x

False = ńx y. y

ifThenElse = ńp x y. p x y

where the code ifThenElse b (do this) (do that) may well evaluate both
branches – there is no guarantee that b is one of the well-behaving expres-
sions True or False.

In the later chapters, I am modelling an analysis that makes use of
exactly that: A case analysis evaluates at most one of its branches (and
exactly one, unless the scrutinee diverges). To prove that analysis to be
correct, I need the language at hand to include a built-in case analysis
operator that exhibits that behaviour – the above Church encoding is not
enough.

But as just that feature is needed, I add just what is required to model
it, and not more: Two constructors without arguments, and an if-then-
else-construct. I deliberately do not add more complex data types that
can carry parameters: As just explained, that would not add anything of
value to the semantics.
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2.4.2 Adding Booleans

The extended language sports three additional syntactical constructs, two
of which are also values:

e ∈ Exp ::= . . . | Ct | Cf | e ? et : ef
v ∈ Val ::= . . . | Ct | Cf

The notation e ? et : ef , taken from the ternary operator in C-like languages,
is a succinct way to write an if-then-else construct, and the use of t and
f in variable indices avoids repeating rules for the two cases, if the meta
variable b is used to represent either of these. This can be seen in the two
additional rules for the natural semantics:

Γ : Cb ⇓L Γ : Cb
CON

Γ : e ⇓L ∆ : Cb ∆ : eb ⇓L Θ : v
Γ : e ? et : ef ⇓L Θ : v

IFTHENELSE

As the other rules of the semantics are unchanged, the proofs by in-
duction performed in this chapter only need to be extended by the two
additional cases.

The required changes to the denotational semantics are a bit more in-
volved, as the semantic domain changes: Besides functions, the semantics
can also return Booleans, and the equation becomes

Value = ((Value→ Value) + 2)⊥,

where + is the disjoint sum and 2 the discrete two-element domain with
the (conveniently named) elements {t, f}. In addition to the existing
injection and projection functions

Fn(_) : (Value→ Value)→ Value

_ ↓Fn _: Value→ Value→ Value

there is the additional injection function

B(_) : 2→ Value
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and the deconstruction function

_ ↓B (_, _) : Value→ Value→ Value→ Value

where

v ↓B (v1, v2) =


v1 if v = B(t)
v2 if v = B(f)
⊥ otherwise.

The partial order v on Value relates neither values of the form Fn( f )
with B(b) nor B(t) with B(f).

The denotation of the new syntactic constructs is given by

JCbKρ := B(b)

Je ? et : efKρ := JeKρ ↓B (JetKρ, JefKρ)

The thus extended natural semantics is still correct with regard to the
denotational semantics:

Proof (of Theorem 2)
Two additional cases need to be handled.

Case: CON

This case is trivial, just like case LAM.

Case: IFTHENELSE

The induction hypotheses are JeK{{Γ}}ρ = JCbK{{∆}}ρ and {{Γ}}ρ =|dom Γ
{{∆}}ρ as well as JebK{{∆}}ρ = JvK{{Θ}}ρ and {{∆}}ρ =|dom∆

{{Θ}}ρ.
We have JebK{{Γ}}ρ = JebK{{∆}}ρ: Because the judgement is closed, i.e.

fv(eb) ⊆ dom Γ ∪ L, it suffices to show {{Γ}}ρ =|dom Γ∪L
{{∆}}ρ. The induc-

tion hypothesis provides the equality on dom Γ, and for x ∈ L \ dom Γ we
also have x /∈ dom∆ by Lemma 2, so we have ρ x on both sides.

Like in case APP, the second part follows from the corresponding in-
duction hypotheses and dom Γ ⊆ dom∆. The first part can be calculated:

Je ? et : efK{{Γ}}ρ = JeK{{Γ}}ρ ↓B (JetK{{Γ}}ρ, JefK{{Γ}}ρ)

{ by the denotation of the !if-!then-!else construct }
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= JCbK{{∆}}ρ ↓B (JetK{{Γ}}ρ, JefK{{Γ}}ρ)

{ by the induction hypothesis }

= B(b) ↓B (JetK{{Γ}}ρ, JefK{{Γ}}ρ)

{ by the denotation of the constructor }

= JebK{{Γ}}ρ
= JebK{{∆}}ρ

{ see above }

= JvK{{Θ}}ρ
{ by the induction hypothesis } �

The adequacy proof can also be recovered, after extending the resourced
domain CValue to contain {t, f}, i.e.

CValue =
(
((C→ CValue)→ (C→ CValue)) + 2

)
⊥

with the analogous injection function and deconstructor

CB(_) : 2→ CValue

_ ↓CB (_, _) : CValue→ CValue→ CValue→ CValue.

which allow the definition of the resourced denotational semantics to be
extended by

NJCbKρ := CB(b)

NJe ? et : efKρ := NJeKρ ↓CB (NJetKρ,NJefKρ).

Proof (of Lemma 11)
We need to extend the case analysis on e:

Case: e = Cb
follows immediately from the rule CON.

Case: e = e′ ? et : ef
The assumption NJe′ ? et : efKN{{Γ}} 6= ⊥ resolves to

NJe′KN{{Γ}} ↓CB (NJetKN{{Γ}},NJefKN{{Γ}}) 6= ⊥.
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From this, we can conclude that NJe′KN{{Γ}} = CB(b) for a b ∈ {t, f}, and
NJebKN{{Γ}} 6= ⊥.

We can therefore apply the first induction hypothesis and obtain ∆ and
v so that Γ : e′ ⇓L′ ∆ : v, where L′ = L ∪ fv(Γ, e′) – the extended set of
variables ensures that the judgement is closed. By the correctness of the
resourced denotational semantics (Lemma 8, the proof of which can be
extended analogously to Theorem 2), we haveNJvKN{{∆}} v NJe′KN{{Γ}} =
CB(b), so the value v necessarily is v = Cb.

The correctness lemma also statesN{{Γ}} v N{{∆}}, soNJebKN{{∆}} 6= ⊥
and the induction hypothesis provides Θ and v′ with ∆ : eb ⇓L′ Θ : v′.

By rule IFTHENELSE, this shows Γ : e′ ? et : ef ⇓L′ Θ : v′ and hence, as
L ⊆ L′, we have Γ : e′ ? et : ef ⇓L Θ : v′ as desired. �

The three semantics and the corresponding proofs thus allowed for a
modular extension by Booleans: I just added new cases to the syntax, the
natural rules, the denotational domains and the various functions, but
left the overall structure of the proofs and the other cases as they were. I
had to be careful not to make use of the lemma “If Γ : e ⇓L ∆ : v, then v
is a lambda abstraction,” which no longer holds in the extended version;
this comes up in the proof of Lemma 11.

2.5 A small-step semantics

One important feature of Launchbury’s natural big-step-semantic is that
the stack is implicit: During the evaluation of an application, for example,
the argument is not stored anywhere in the configuration, but lives only
in the rules. This is elegant and convenient if during a proof the stack
does not need to be taken into account, e.g. in the adequacy proof, but
causes headaches when the stack is relevant to the discussion at hand,
which will be the case in Chapter 4.

For such feats, a semantics with an explicit stack in the configuration
is better suited. As explained in the beginning of the chapter, I need to
refrain from just building my own semantics that happens to suit me9 but
rather build on existing, well-received definitions.

9I tried that, and it did not go well.
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(Γ, e x, S)⇒ (Γ, e, $x·S) APP1

(Γ, ńy. e, $x·S)⇒ (Γ, e[y := x], S) APP2

(x 7→ e) ∈ Γ =⇒ (Γ, x, S)⇒ (Γ \ x, e, #x·S) VAR1

isVal e =⇒ (Γ, e, #x·S)⇒ (Γ[x 7→ e], e, S) VAR2

(Γ, (e ? et : ef ), S)⇒ (Γ, e, (et : ef )·S) IF1

b ∈ {t, f} =⇒ (Γ,Cb, (et : ef )·S)⇒ (Γ, eb, S) IF2

dom∆ ∩ fv(Γ, S) = {} =⇒
(Γ, let ∆ in e, S)⇒ ((∆, Γ), e, S) LET1

Figure 10: The small-step semantics, due to Sestoft [Ses97]

Sestoft has derived a small-step semantics with an explicit stack from
Launchbury’s semantics, called the mark-1 abstract machine, and proved
it to be equivalent to Launchbury’s semantics. I follow that path and
pave it by formalising it in Isabelle. I include my addition of Booleans
(Section 2.4.2) in the treatment, but it is a modular extension: Simply
ignore the cases related to Booleans and you obtain the plain semantics.

2.5.1 Sestoft’s mark-1 abstract machine

Sestoft’s semantics operates on configurations (Γ, e, S) that consist of the
heap Γ, the control e (i.e. the expression currently under evaluation) and
the stack S. The stack is constructed from
• the empty stack, [],
• arguments, written $x·S and put on the stack during the evaluation

of an application,
• update markers, written #x·S and put on the stack during the evalu-

ation of a variable’s right-hand-side, and
• alternatives, written (et : ef )·S and put on the stack during the eval-

uation of the scrutinee of an if-then-else-construct.
Throughout this work we assume all configurations to be good, i.e. dom Γ
and #S := {x | #x ∈ S} are disjoint and the update markers on the stack
are distinct.
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The relation⇒, given in Fig. 10, defines the semantics of a one-step-
reduction. As usual, ⇒∗denotes the reflexive transitive closure of this
relation.

Note that the semantics takes good configurations to good configura-
tions.

2.5.2 Relating Sestoft’s and Launchbury’s semantics

Sestoft’s small-step and Launchbury’s big-step semantics are closely re-
lated, this section explicates this relationship. I follow [Ses97] here, mak-
ing minor adjustments to ease the implementation in Isabelle.

Lemma 14 (Small-step simulates big-step)
If Γ : e ⇓L ∆ : v and fv(Γ, e, S) ⊆ dom Γ ∪ L, then (Γ, e, S)⇒∗ (∆, v, S).

Proof
By induction on the derivation of Γ : e ⇓L ∆ : v, with S arbitrary.

Case: LAM and CON

are trivial, as⇒∗ is reflexive.

Case: APP

The side condition of the first induction hypothesis follows from the
assumption by fv(Γ, e x, S) = fv(Γ, e, $x·S).

From that follows the side condition of the second induction hypothesis,
i.e. fv(∆, e′[y := x], S) ⊆ dom∆ ∪ L, using dom Γ ⊆ dom∆ (Lemma 1) and
using that the natural semantics preserves closedness.

It remains to do a simple calculation:

(Γ, e x, S)⇒ (Γ, x, $x·S) { by APP1 }

⇒∗ (∆, ńy. e′, $x·S) { first induction hypothesis }

⇒ (∆, e′[y := x], S) { by APP2 }

⇒∗ (Θ, v, S) { second induction hypothesis }
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Case: VAR

follows from this calculation:

((x 7→ e, Γ), x, S)⇒ (Γ, e, #x·S) { by VAR1 }

⇒∗ (∆, v, #x·S) { induction hypothesis }

⇒ ((x 7→ e, ∆), e, S) { by VAR2 }

The side condition of the induction hypothesis, i.e. the inequality
fv((Γ, e, #x·S)) ⊆ dom Γ ∪ (L ∪ {x}), follows directly from the given as-
sumption fv((x 7→ e, Γ), x, S) ⊆ dom (x 7→ e, Γ) ∪ L.

Case: LET

The calculation is short:

(Γ, let ∆ in e, S)⇒ ((∆, Γ), e, S) { by LET1 }

⇒∗ (Θ, v, S) { by induction hypothesis }

where the side-condition of LET1 follows from the side-condition of LET.

Case: IFTHENELSE

resembles the case for APP, with a similar proof for the side conditions,
and the calculation

(Γ, e ? et : ef , S)⇒ (Γ, e, (et : ef )·S) { by IF1 }

⇒∗ (∆,Cb, (et : ef )·S) { induction hypothesis }

⇒ (∆, eb, S) { by IF2 }

⇒ (Θ, v, S) { induction hypothesis } �

The proof of the other direction, i.e. that an evaluation in the small-step
semantics has a corresponding derivation in the big-step-semantics, is
a bit more involved, as we need to recover the tree-structure of the big-
step-semantics from the flat sequence of configurations in the small step
semantics.

To that end, we use the notion of a balanced execution: An execution
c1 ⇒ · · · ⇒ cn, n ≥ 1, is balanced if the stack of each intermediate
configuration ci, i ∈ {1, . . . , n− 1} is an extension of the stack of c1, and
the stack of cn equals the stack of c1. We write c1 ⇒∗b c2 for such a balanced
execution.
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As every rule of the semantics only pushes or pops at most one ele-
ment off the stack, balanced executions can be broken into smaller parts,
which are still balanced, as shown by the following “intermediate value
theorem”:
Lemma 15
Given a balanced execution c1 ⇒ c2 ⇒ · · · ⇒ c5 where the stack of c2
is the stack of c1 with one element pushed, then there are intermediate
states c3 and c4 so that

c1 ⇒ c2 ⇒∗b c3 ⇒ c4 ⇒∗b c5.

Proof
Because the execution is balanced, c5 and c1 have the same stack. In
particular, the stack of c5 does not extend the stack of c2. Let c4 be the
first configuration in that sequence whose stack does not extend the stack
of c2, and c3 be the configuration preceding c4. I claim that c2 ⇒∗ c3 and
c4 ⇒∗ c5 are indeed balanced.

Every stack in c2 ⇒∗ c3 extends the stack of c2 by construction. Further-
more, the stack of c3 is equal to the stack of c2: If it was not, then the stack
of the configuration following c3, namely c4, would still be an extension
of c2’s stack, contradicting the choice of c4.

The stack of c4 is equal to the stack of c5: As it follows an extension of
c2’s stack, but itself is not an extension of that, it must be c2 with the top
element popped. By assumption, that is c1’s stack. So c4 and c5 have the
same stack, and all intermediate states have a stack that is an extension of
that. �

Example
This execution is balanced and fulfils the assumptions of Lemma 15, as
the second stack equals the first with one element pushed:

(Γ, x y, S)⇒ (Γ, x, $x·S)
⇒ ([], (ńy. (ńz. z)), #x·$x·S)
⇒ (Γ, (ńy. (ńz. z)), $x·S)
⇒ (Γ, (ńz. z), S)

where Γ = x 7→ (ńy. (ńz. z)).
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Lemma 15 decomposes this sequences into the two balanced executions

(Γ, x, $x·S)⇒∗b (Γ, (ńy. (ńz. z)), $x·S)

and
(Γ, (ńz. z), S)⇒∗b (Γ, (ńz. z), S).

where the second balanced execution does not actually do any steps. �

Lemma 16 (Big-step simulates small-step)
Let (Γ, e, S)⇒∗b (∆, v, S) with isVal v. Then Γ : e ⇓#S ∆ : v.

Proof
by complete induction on the number of steps in (Γ, e, S)⇒∗b (∆, v, S).

If there are no intermediate steps, then Γ = ∆, e = v and we have
Γ : v ⇓#S Γ : v either by LAM or CON.

Otherwise, we proceed by case analysis on the first rule applied in the
execution. This rule cannot be APP2, VAR2 or IF2, as these pop an element
off the stack, in contradiction to the execution being balanced.
Case: APP1
We have e = e′ x and using Lemma 15, we can decompose the execution
as follows:

(Γ, e′x, S)⇒ (Γ, e′, $x·S)⇒∗b (∆′, e3, $x·S)⇒ (∆′′, e4, S)⇒∗b (∆, v, S).

As only rule APP2 pops argument marker $x off the stack, we obtain

(Γ, e′x, S)⇒ (Γ, e′, $x·S)⇒∗b (∆′, ńy. e′′, $x·S)
⇒ (∆′, e′′[y := x], S)⇒∗b (∆, v, S).

By induction, the first balanced execution yields Γ : e′ ⇓#S ∆′ : ńy. e′′,
while the second yields ∆′ : e′′[y := x] ⇓#S ∆ : v, which, by APP, concludes
this case.
Case: VAR1
By an analogous decomposition using Lemma 15 we find e = x and

(Γ, x, S)⇒ (Γ \ {x}, e′, #x·S)⇒∗b (∆′, z, #x·S)
⇒ ((x 7→ z, ∆′), z, S)⇒∗b (∆, v, S)

with (x 7→ e′) ∈ Γ and isVal z.
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The balanced execution (x 7→ z, ∆′, z, S)⇒∗b (∆, v, S) is actually empty:
With a value as the current execution, only rules APP2, VAR2 and IF2 can
apply. But these pop an element off the stack, so they cannot begin a
balanced execution. Therefore, ∆ = x 7→ z, ∆′ and z = v.

Using the induction hypothesis on the other balanced sub-execution,
we obtain Γ \ {x} : e′ ⇓#S∪{x} ∆′ : v which, by VAR, concludes this case.

Case: IF1

Starting as before, we find e = e′ ? et : ef and

(Γ, e′ ? et : ef , S)⇒ (Γ, e′, (et : ef )·S)⇒∗b (∆′,Cb, (et : ef )·S)
⇒ (∆′, eb, S)⇒∗b (∆, v, S).

Using the induction hypothesis on the two balanced sub-execution, we
obtain Γ : e′ ⇓#S ∆′ : Cb and ∆′ : eb ⇓S ∆ : v which, by IFTHENELSE,
conclude this case.

Case: LET1

As this rule does not modify the stack, we have

(Γ, let ∆′ in e′, S)⇒ ((∆′, Γ), e′, S)⇒∗b (∆, v, S).

Using the induction hypothesis on the balanced sub-execution, we
obtain (∆′, Γ) : e′ ⇓#S ∆ : v which, by LET, concludes this case. �

2.5.3 Discussions of modifications

Sestoft’s paper [Ses97] is already on the rigorous side and quite suitable
to be brought into a machine-checkable form. One difference is, of course,
due to my choice of nominal logic to implement name binding: While
Sestoft’s rule for let expressions renames the let-bound variables to fresh
ones, as they enter the the heap, my rule LET1 simply assumes them to
already be fresh. Intuitively, this is equivalent, but the practical benefit of
not having to push the renaming into the expressions by substitution is
great.
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Constructors

This section already includes the addition of Booleans and the if-then-else-
construct to the language. Sestoft, following Launchbury, initially only
has variables, application, lambda abstraction and mutually recursive
let-bindings. As before, my addition is modular: One can simply ignore
the extra case and obtain a formalisation of Sestoft’s machine.

He introduces constructors and case expressions in a separate chapter
of his paper. His constructors support parameters, but the design is
equivalent to mine.

Fusing a proof

The definition of a balanced execution is the same as Sestoft’s, and the
proof of Lemma 16 follows his idea, but is structured differently. Sestoft
first notices, by use of Lemma 15 and rule inversion on the small step
rules, that every balanced execution is of one of these forms:
• It is empty.
• It is a sequence of rule APP1 followed by a balanced execution,

followed by APP2, followed by another balanced execution.
• It is a sequence of rule VAR1 followed by a balanced execution,

followed by VAR2.
• It is a sequence of rule IF1 followed by a balanced execution, fol-

lowed by IF2, followed by another balanced execution.
• It is a sequence of rule LET1 followed by a balanced execution.

This describes a (context-free) grammar of balanced executions, and his
proof of Lemma 16 proceeds by induction on the productions of that
grammar.

I could have followed this path by defining another predicate for bal-
anced executions, as an inductively defined predicate following these
rules, then proving that all balanced executions are contained in that
grammar and finally performing the proof of Lemma 16 by induction
on that predicate. But that would be considerably more work for little
gain, as long as this grammar of balanced executions is not used again,
so I chose to fuse10 these two steps of the proof into one, by using the

10It is interesting to see that the ideas behind list fusion, i.e. fusing generators and consumers
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complete induction on the length of the execution and recovering the tree
structure “on the fly” using Lemma 15.

2.6 The Isabelle formalisation

A distinguishing feature of this dissertation’s treatment of Launchbury’s
and Sestoft’s semantics is that I have implemented the definitions, the-
orems and proofs in the interactive theorem prover Isabelle [NPW02].
Nevertheless, I chose to write most of this thesis mostly in the classical
style of hand-written mathematics, addressing the reader who is inter-
ested in my constructions, results and proofs and who, although happy to
know that everything is machine-checked, is not interested in the Isabelle
formalisation itself.

In contrast, the following section addresses the reader who also won-
ders how I implemented this in Isabelle, what techniques I used, and why.
The section also serves as a map to find your way around the Isabelle
theories, and draws the connection between the artefacts in the thesis and
the Isabelle development.

2.6.1 Employing nominal logic

In Section 2.1, I introduce the syntax of the lambda calculus and state
that I consider these to be equal up to alpha-conversion. In the Isabelle
formalisation, I use the nominal package (cf. Section 1.6) to create a data
type for expressions in my syntax:

Terms.thynominal_datatype exp =
Var var
| App exp var
| LetA as::assn body::exp binds bn as in body as
| Lam x::var body::exp binds x in body (Lam [_]. _ [100, 100] 100)
| Bool bool
| IfThenElse exp exp exp (((_)/ ? (_)/ : (_)) [0, 0, 10] 10)
and assn =

of inductive data types, carry over to transforming proofs so well. The Curry-Howard
correspondence at its best.



76 Formalizing Launchbury’s natural semantics

ANil | ACons var exp assn
binder

bn :: assn⇒ atom list
where bn ANil = [] | bn (ACons x t as) = (atom x) # (bn as)

The annotation binds indicates where in the syntax tree binders are,
and what their scope is. The command nominal_datatype then takes care
of constructing the data type with the desired equalities.

The command does not support nested recursion, so it is not possible
to simply write

| Let Γ::((var × exp) list) body::exp binds domA Γ in body Γ

Instead, I have to effectively re-define the list type along with the
expression type and simultaneously define the function that collects all
the binders. Luckily, the resulting type assn is indeed isomorphic to (var
× exp) list, so subsequently I define conversion functions between these
two types and define the function Let with the desired type.

A definitory command such as nominal_datatype produces a number
of definitions and lemmas, such as distinctness of constructors, size lem-
mas and induction rules. I re-state all of these in terms of Let instead
of LetA, which is slightly tedious, but from then on I can use Let exclu-
sively, including in function definitions and inductive proofs, just as if
nominal_datatype supported nested recursion directly.

2.6.2 The type of environments

The type for environments used here is var⇒ Value, as one would expect.
But it was non-trivial to actually implement it this way, and an earlier
version went a different route that, although eventually abandoned, is
worth describing.

The defining equation for the semantics of lambda abstractions is

[[ λx. e ]]$ = Fn·(Λ v. [[ e ]]$(x := v)).

Note that the argument on the left hand side is the representative of an
equivalence class (defined using the Nominal package), so this definition
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is only allowed if the right hand side is indeed independent of the ac-
tual choice of x. The nominal_function command requires the user to
discharge that proof obligation before the function is actually defined.

This is shown most commonly and easily if x is fresh in all the other
arguments (x /∈ fv $), and indeed the Nominal package allows me to
specify this as a side condition to the defining equation, which is what I
did in the first version of [Bre13].

But this convenience comes as a price: Such side-conditions are only
allowed if the argument has finite support (otherwise there might be no
variable fulfilling x /∈ fv $). More precisely: The type of the argument
must be a member of the fs typeclass provided by the Nominal package
(cf. Section 1.7.2). The type var⇒ Value cannot be made a member of this
class, as there obviously are elements that have infinite support.

My fix – inspired by HOLCF’s handling of continuity using a dedicated
type – was to introduce a new type constructor, fmap, for partial functions
with finite domain. This is fine: Only functions with finite domain matter
in my formalisation.

The introduction of fmap had further consequences. The main type class
of the HOLCF package, which we use to define domains and continuous
functions on them, is the class cpo of chain-complete partial orders. With
the usual ordering on partial functions, (var, Value) fmap cannot be a
member of this class: As there is an infinite supply of variables, there
exists a chain of partial functions of ever increasing domain, and the limit
of that chain would necessarily have an infinite domain, and hence no
longer is in fmap.

The fix here is to use a different ordering on fmap and only let elements
be comparable that have the same domain. In my formalisation, the
domain is always known (e.g. all variables bound on some heap), so this
seemed to work out.

But not without causing yet another issue: With this ordering, (var,
Value) fmap is a cpo, but lacks a bottom element, i.e. it is no longer an pcpo,
and HOLCF’s built-in operator µ x. f x for expressing least fixed points, as
they occur in the semantics of heaps, is not available. Furthermore, t is
not a total function, as it is only defined if the arguments have the same
domain. In the end, I had to define a rather convoluted set of theories that
formalise functions that are continuous on a specific set, fixed points on
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such sets etc.
Eventually, I finished all proofs using that approach, but it amounted

to an unreasonable amount of extra work and awkward proofs infested
with statements about the domains of environments.

In a later refinement, I found a way to solve this problem much more
elegantly. Using a small trick I defined the semantics functions so that

[[ λx. e ]]$ = Fn·(Λ v. [[ e ]]$(x := v))

holds unconditionally. Technically, the definition is

[[ λx. e ]]$ = Fn·(Λ v. [[ e ]]$|fv (λx. e)(x := v))

where the right-hand-side can be shown to be independent of the choice
of x, as x /∈ fv (λx. e). This definition can more easily be shown to be well-
formed, and once the function is defined, [[ e ]]$ = [[ e ]]$|fv e

can be proved

by induction. By using that lemma, I can prove the desired equation for
[[ λx. e ]]$ as a lemma. The same trick is applied to the equation for let
bindings.

This allows me to use the type var⇒ Value for the semantic environ-
ments and considerably simplifies the formalisation compared to the
initial version of [Bre13].

2.6.3 Abstracting over the denotational semantics

I have defined two denotational semantics in this chapter: The standard
semantics (JeKρ, see Fig. 7) and the resourced denotational semantics
(NJeKσ, see Fig. 8). The definitions are quite similar, and a number of
lemmas hold for both of them. Moreover, both definitions are mutually
recursive with the definition of the respective heap semantics ({{Γ}}ρ
resp. N{{Γ}}σ), which is defined identically in both cases. In the Isabelle
theories, I therefore abstracted over the differences in order to define a
generic semantics function once and instantiate it twice. Given the rather
large and annoying proofs required for a function definition over nominal
terms, this pays off.
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I define the heap semantics within a locale that abstractly assumes the
presence of some denotation function for some type of expressions:

HasESem.thylocale has_ESem =
fixes ESem :: ′exp::pt⇒ ( ′var::at_base⇒ ′value)→ ′value::{pure,pcpo}

At this point, the concrete type of expressions, variables and semantics
values is left open (the initial apostrophe in ’value denotes a type vari-
able). No further assumptions about ESem are required to define the heap
semantics, besides those encoded in the type of ESem:

• The expressions contain variables (pt, provided by the Nominal
package, as explained in Section 1.7.2).

• The type of variables is a base value in terms of the Nominal package
(at_base). In our setting, var is the only such type.

• The semantics is continuous in the environment (use of→ instead
of⇒, provided by the HOLCF package).

• The type of the semantic values is oblivious to names (type class pure,
provided by the Nominal package) and it forms a pointed chain-
complete partial order (type class pcpo, provided by the HOLCF
package).

The former restriction on ’value makes it easier to prove the functions to
be equivariant, while the latter is a natural requirement for the fixed point
based definition for the heap semantics, which is

HeapSemantics.thydefinition
HSem :: ( ′var × ′exp) list⇒ ( ′var⇒ ′value)→ ( ′var⇒ ′value)
where HSem Γ = (Λ $ . (µ $ ′. $ ++domA Γ [[Γ]]$ ′))

The Isabelle command definition allows to define regular functions
(type constructor ⇒) by giving the parameters on the left, but it does
not know anything about HOLCF’s type of continuous functions (type
constructor→). Therefore, the second argument is consumed by a lambda-
abstraction using HOLCF’s continuous lambda operator Λ.
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The two denotational semantics differ in the concrete domain (Value
vs. (C → CValue)), and therefore the injection and projection functions
are different. Furthermore the resourced denotational semantics needs to
keep track of the consumed resources. In order to abstractly define the
semantics of expressions, I define a locale that provides these components:

AbstractDenotational.thylocale semantic_domain =
fixes Fn :: ( ′Value→ ′Value)→ ( ′Value::{pcpo_pt,pure})
fixes Fn_project :: ′Value→ ( ′Value→ ′Value)
fixes B :: bool discr→ ′Value
fixes B_project :: ′Value→ ′Value→ ′Value→ ′Value
fixes tick :: ′Value→ ′Value

The locale parameter tick is used to count the resources as they are
consumed.

The type class pcpo_pt combines the classes pcpo (for pointed chain-
complete partial orders) with pt (for types that may contain names), addi-
tionally ensuring that the permutation of names is continuous.

Within this locale, I define the abstract denotational semantics:

nominal_function
ESem :: exp⇒ (var⇒ ′Value)→ ′Value

where
ESem (Lam [x]. e) = (Λ $. tick·(Fn·(Λ v. ESem e·(($ f |‘ fv (Lam [x]. e))(x := v)))))
| ESem (App e x) = (Λ $. tick·(Fn_project·(ESem e·$)·($ x)))
| ESem (Var x) = (Λ $. tick·($ x))
| ESem (Let as body) = (Λ $. tick·(ESem body·(has_ESem.HSem ESem as·($ f |‘ fv (Let
as body)))))
| ESem (Bool b) = (Λ $. tick·(B·(Discr b)))
| ESem (scrut ? e1 : e2) = (Λ $. tick·((B_project·(ESem scrut·$))·(ESem e1·$)·(ESem
e2·$)))

Note that this definition has a non-trivial recursion pattern: It uses
nested recursion via the heap semantics defined in the has_ESem locale, to
which I therefore have to pass the expression semantics ESem – the very
thing that I am defining here – as an argument.

From the abstract denotational semantics I can produce the concrete
ones by interpretation, where the parameters of the locale are specified.
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For the standard denotational semantics, no resource accounting takes
place, so the last parameter is the (continuous) identity:

Denotational.thyinterpretation semantic_domain Fn Fn_project B B_project (Λ x. x).

The arguments to pass for the resourced denotational semantics are not
simply the injection and projection function themselves, as I instantiate
the locale’s type parameter ’value with C → CValue and the resource
argument needs to be passed along:

ResourcedDenotational.thyinterpretation semantic_domain
Λ f . Λ r. CFn·(Λ v. (f ·(v))|r)
Λ x y. (Λ r. (x·r ↓CFn y|r)·r)
Λ b r. CB·b
Λ scrut v1 v2 r. CB_project·(scrut·r)·(v1·r)·(v2·r)
C_case.

The case analysis function on C, which was produced by the HOLCF
package when I defined the domain C, happens to have the right type (C
→ ’a)→ C→ ’a to serve as the tick argument to the locale.

In order to convince myself that despite all this abstraction and defini-
tional detours, I have defined the semantics that I claim I have defined,
I stated the equations as a lemma and proved them. For the standard
denotational semantics, this reads:

Denotational.thylemma ESem_simps:
[[ Lam [x]. e ]]$ = Fn·(Λ v. [[ e ]]$(x := v))

[[ App e x ]]$ = [[ e ]]$ ↓Fn $ x
[[ Var x ]]$ = $ x
[[ Bool b ]]$ = B·(Discr b)
[[ (scrut ? e1 : e2) ]]$ = B_project·([[ scrut ]]$)·([[ e1 ]]$)·([[ e2 ]]$)
[[ Let Γ body ]]$ = [[body]]{|Γ|}$
by simp_all

2.6.4 Relating the domains Value and CValue

In order to relate the two denotational semantics, I defined the relation
/. in Section 2.3.4, closely following the work of Sánchez-Gil et al. in
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[SHO11]. Their domain D corresponds to my Value, their domain E is my
type C→ CValue and A is CValue.

While Sánchez-Gil et al. construct their domain “by hand”, by a series of
domain approximations Dn resp. En, I can use Isabelle’s HOLCF package
to construct the domain directly from its domain equation (which already
includes Booleans; as mentioned in Section 2.4.2 this addition is modular
and can be ignored to obtain a formalisation closer to the work of Sánchez-
Gil et al.)

Value.thydomain Value = Fn (lazy Value→ Value) | B (lazy bool discr)

CValue.thydomain CValue
= CFn (lazy (C→ CValue)→ (C→ CValue))
| CB (lazy bool discr)

In my formalisation, the approximations are just subsets of the full
domain, and the n-injection φE

n : En → E is the identity here.
The projections in [SHO11] correspond to the take-functions generated

by the HOLCF package, which produce finite approximations of their
arguments. For example, ψD

n : E→ En becomes Value_take with type nat
⇒ Value→ Value. The Isabelle theories introduce the former notation as
abbreviations for the latter to better match the presentation in [SHO11].

Section 2.3 of [SHO11] contains the following two equations without
proof:

ψE
n ((e ↓CFn a) c) = (ψE

n+1(e) ↓CFn ψA
n (a)) c (2)

ψD
n (d ↓Fn d′) = ψD

n+1(d) ↓Fn ψD
n (d′) (3)

Unfortunately, these equations do not hold in general. A counter-example
to (3) can be given by

d = Fn(λe.(e ↓Fn ⊥)),
d′ = Fn(λ_.Fn(λ_.⊥)) and

n = 1.

In this case, the left-hand-side of the equation simplifies to Fn(λ_.⊥),
while the right-hand-side is simply ⊥. A counter-example to (2) can be
constructed analogously.
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The critical property of d′ is that it is “two levels deep”. On the left hand
side, d ↓Fn d′ passes one argument to d′ and hence returns a result that
is one level deep, which goes through ψD

1 unaltered, while on the right
hand side, ψD

1 (d′) cuts off the structure of d′ after one level and returns
Fn(λ_.⊥).

Therefore, in order for the equation to hold, the argument to d on the
left-hand needs to be at most one level deep. An extra invocation of ψD

n
on the left hand side can ensure this:

ψD
n (d ↓Fn ψD

n (d′)) = ψD
n+1(d) ↓Fn ψD

n (d′)

This lemma can already be found in [AO93], equation 4.3.5 (1).
The problematic equations are used in the proof of the only-if direction

of Proposition 9 in [SHO11]. I fixed this by applying take-induction, which
inserts the extra call to ψD

n in the right spot and allows me to proceed
using the fixed lemma.

2.7 Related work

A large number of developments on formal semantics of functional pro-
gramming languages in the last two decades build on Launchbury’s work;
here is a short selection: Van Eekelen & de Mol [EM04] add strictness
annotations to the syntax and semantics of Launchbury’s work. Nakata
& Hasegawa [NH09] define a small-step semantics for call-by-need and
relate it to a Launchbury-derived big-step semantics. Nakata [Nak10]
modifies the denotational semantics to distinguish direct cycles from loop-
ing recursion. Sánchez-Gil et al. [SHO10] extend Launchbury’s semantics
with distributed evaluation. Baker-Finch et al. [BKT00] create a semantics
for parallel call-by-need based on Launchbury’s.

While many of them implicitly or explicitly rely on the correctness
and adequacy proof as spelled out by Launchbury, some stick with the
original definition of the heap semantics using t, for which the proofs
do not got through [EM04; NH09; SHO10; BKHT99], while others use
right-sided updates, without further explanation [Nak10; BKT00]. The
work by Baker-Finch et al. is particularly interesting, as they switched
from the original to the fixed definition between the earlier tech report
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and the later ICFP publication, unfortunately without motivating that
change.

Such disagreement about the precise definition of the semantics is
annoying, as it creates avoidable incompatibilities between these publica-
tions. I hope that my fully rigorous treatment will resolve this confusion
and allows future work to standardise on the “right” definition.

Furthermore, none of these works discuss the holes in Launchbury’s
adequacy proof, even those that explicitly state the adequacy of their
extended semantics. My adequacy proof is better suited for such exten-
sions, as it is rigorous and furthermore avoids the intermediate natural
semantics.

This list is just a small collection of many more Launchbury-like se-
mantics. Often the relation to a denotational semantics is not stated,
but nevertheless they are standing on the foundations laid by Launch-
bury. Therefore, it is not surprising that others have worked on formally
fortifying these foundations as well:

In particular Sánchez-Gil et al. worked towards rigorously proving
Launchbury’s semantics correct and adequate. They noted that the rela-
tion between the standard and the resourced denotational semantics is not
as trivial as it seemed at first, and worked out a detailed pen-and-paper
proof [SHO11]. I have formalised this, fixing mistakes in the proof, and
build on their result here (Lemma 12).

They also bridged half the gap between Launchbury’s natural and
alternative natural semantics [SHO15], and plan to bridge the other half.
I avoided these very tedious proofs by bridging the difference on the
denotational side (Section 2.3.6).

As a step towards a mechanisation of their work in Coq, they address
the naming issues and suggest a mixed representation, using de Bruijn
indices for locally bound variables and names for free variables [SHO12].
This approach corresponds to my treatment of names in the formal devel-
opment, using the Nominal logic machinery [UK12] locally but not for
names bound in heaps, and can be found in other formalisation works as
well [PB10].

The aim of this development is to be able to formally prove properties
of the language or the compiler, but not so much to prove individual
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functional programs to be correct; there are better ways to do that. In
the context of using Isabelle to prove properties of Haskell programs,
noteworthy approaches include Haskabelle [RH15], which transforms
Haskell code into Isabelle code, but punts on issues of laziness; Isabelle’s
code generation facilities [Haf09], which go the other way; and HOLCF-
Prelude [BHMS13], which models Haskell’s lazy semantics, albeit without
observable sharing, using HOLCF function definitions in Isabelle.





The problem with Haskell is that it’s
a language built on lazy evaluation
and nobody’s actually called for it.

Randall Munroe, xkcd #1312

CHAPTER 3

Call Arity

AFTER more than two decades of development of Haskell compilers,
one has become slightly spoiled by the quality and power of opti-

misations performed by the compiler. For example, list fusion allows
us to write concise and easy to understand code using combinators and
list comprehensions and still get the efficiency of a tight loop that avoids
allocating the intermediate lists.

Unfortunately, not all list-processing functions used to take part in list
fusion. In particular, before my work, left folds like foldl, foldl’, length
and derived functions like sum were not fusing, and an expression like
sum (filter f [42..2016]) still allocated and traversed one list.

The issue is that in order to take part in list fusion, these need to be
expressed as right folds, which requires higher-order parameters as in

foldl k z xs = foldr (ńv fn z → fn (k z v)) id xs z.

The resulting fused code would be allocating and calling function closures
on the heap, causing the final program to run too slowly (see Section 1.4.3).

Already Andrew Gill noted that eta-expansion based on an arity anal-
ysis would help here [Gil96]. Previous arity analyses, however, are not
precise enough to allow for a fusing foldl.

http://xkcd.com/1312
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let tA = if f a then ... else ...
in let goA x = if f (tB + x) then goA (x+1) else x

tB = let goB y = if f y then goB (goA y) else tA
in goB 0 1

in goA (goA 1)

Figure 11: Is it safe to eta-expand tA?

Why is this so hard? Consider the slightly contrived example in Fig. 11:
Our goal is to eta-expand the definition of tA. For that, we need to ensure
that it is always called with one argument, which is not obvious: Syntacti-
cally, the only use of tA is in goB, and there it occurs without an argument.
But we see that goB is initially called with two arguments, and under
that assumption calls itself with two arguments as well, and it therefore
always calls tA with one argument – done.

But tA is a thunk – i.e. not in head normal form – and even if there
are many calls to tA, the call to f a is only evaluated once. If we were to
eta-expand tA we would be duplicating that possibly expensive work!
So we are only allowed to eta-expand tA if we know that it is called at
most once. This is tricky: tA is called from a recursive function goB, which
itself is called from the mutual recursion consisting of goA and tB, and
that recursion is started multiple times!

Nevertheless we know that tA is evaluated at most once: tB is a thunk,
so although it will be called multiple times by the outer recursion, its right-
hand side is only evaluated once. Furthermore, the recursion involving
goB is started once and stops when the call to tA happens. Together, this
implies that we are allowed to eta-expand tA without losing any work.

I have developed an analysis, dubbed Call Arity, that is capable of this
reasoning and correctly detects that tA can be eta-expanded. It is a combi-
nation of a standard forward call arity analysis ([Gil96], [XP05]) with a
novel cardinality analysis, dubbed co-call analysis. The latter determines
for an expression and two variables whether one evaluation of the ex-
pression can possibly call both variables and – as a special case – which
variables it calls at most once. I found that this is just the right amount of
information to handle tricky cases as those in Fig. 11.
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In this chapter, which is based on the work that I presented at the Trends
in Functional Programming conference in 2014 [Bre15a], I approach the
analysis from the practical, empirical side. Section 3.1 motivates the need
for and the design of the Call Arity analysis. The following two sections
describe the co-call graph data structure that is central to the analysis
(Section 3.2) and the analysis itself (Section 3.3). Section 3.4 describes a
few aspects of the implementation (which is reproduced in its entirety in
Appendix B.2). Finally, Section 3.5 discusses the analysis and quantifies
the performance improvements. Notes on related and future work follow.

3.1 The need for co-call analysis

The main contribution of this chapter is the description of the co-call car-
dinality analysis and its importance for arity analysis. I want to motivate
the analysis based on a sequence of ever more complicated arity analysis
puzzles.

3.1.1 A syntactical analysis

The simplest such puzzle is the following code, where a function is defined
as taking one argument, but always called with two arguments:

let f x = . . .
in f 1 2 + f 3 4.

Are we allowed to eta-expand f by another argument? Yes! How would
we find out about it? We would analyse each expression of the syntax tree
and ask

“For each free variable, what is a lower bound on the number
of arguments passed to it?”

This will tell us that f is always called with two arguments, so we eta-
expand it.
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3.1.2 Incoming arity

Here is a slightly more difficult puzzle:

let f x = ...
g y = f (y+1)

in g 1 2 + g 3 4.

Are we still allowed to eta-expand f? The previous syntactic approach
fails, as the right-hand side of g mentions f with only one argument.
However, g itself can be eta-expanded, and once that is done we would
see that g’s right hand side is called with one argument more. We could
run the previous analysis, simplify the code, and run the analysis once
more, but we can do better by asking, for every expression:

“If this expression is called with n arguments, for each free
variable, what is a lower bound on the number of arguments
passed to it?”

The body of the let will report to call g with two arguments. The pattern
on the left-hand side of the definition of g consumes one of them, so we
can analyse the right-hand side with an incoming arity of 1, and thus find
out that f is always called with two arguments.

For recursive functions this is more powerful than just running the
simpler variant multiple times. Consider

let f x = . . .
g y = if y > 10 then f y else g (y + 1)

in g 1 2 + g 3 4.

A purely syntactical approach will never be able to eta-expand g or f. But
by assuming an incoming arity we can handle the recursive case: The
body of the let reports that g is called with two arguments. We initially
assume that to be true for all calls to g. Next we analyse the right-hand
side of g and will learn – under our assumption – that it calls g with two
arguments, too, so our assumption was justified and we can proceed.
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Of course, it may well be that the assumption is refuted by analysing
the definition of the recursive function:

let f x = . . .
g y = if y > 10 then f y else foo (g (y+1))

in g 1 2 + g 3 4.

The body still reports that it calls g with two arguments, but – even under
that assumption – the right-hand side of g calls g with only one argument.
So we have to re-analyse g with one argument, which in turn calls f with
one argument and no eta-expansion is possible here.

This corresponds to the analysis outlined in [Gil96].

3.1.3 Called-once information

So far we have only eta-expanded functions; for these the final analysis
in the previous section is sufficient. But there is also the case of thunks:
If the expression bound to a variable x is not in head-normal form, i.e.
the outermost syntactic construct is a function call, case expression or let-
binding, but not a lambda abstraction or constructor, then that expression
is evaluated upon its first call, and the result is shared with further calls
to x.

If we were to eta-expand the expression, though, the expensive opera-
tion is hidden under a lambda and will be evaluated for every call to x.
Therefore, it is crucial that thunks are only eta-expanded if they are going
to be called at most once. So we need to distinguish the situation

let t = foo x
in if x then t 1 else t 2.

where t is called at most once and eta-expansion is allowed, from

let t = foo x
in t 1 + t 2.

where t is called multiple times and must not be eta-expanded.
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An analysis that could help us here would be answering this question:

“If this expression is called once with n arguments, for each
free variable, what is a lower bound on the number of argu-
ments passed to it, and are we calling it at most once?”

In the first example, both branches of the if would report to call t only
once (with one argument), so the whole body of the let calls t only once
and we can eta-expand t. In the second example the two subexpressions
t 1 and t 2 are both going to be evaluated. Combined they call t twice and
we cannot eta-expand t.

3.1.4 Mutually exclusive calls

What can we say in the case of a thunk that is called from within a
recursion, like in the following code?

let t = foo x
in let g y = if y > 10 then t else g (y+1)

in g 1 2

Clearly t is called at most once, but the current state of the analysis does
not see that: The right-hand side of g reports to call t and g at most once.
But

let t = foo x
in let g y = if y > 10 then id else g (t y)

in g 1 2

would yield the same result, although t is called many times!
How can we extend our analysis to distinguish these two cases? The

crucial difference is that in the first code, g calls either t or g, while the
second one calls both of them together. So we would like to know, for
each expression:

“If this expression is called once with n arguments, for each
free variable, what is a lower bound on the number of argu-
ments passed to it? Additionally, what set of variables is called
mutually exclusively and at most once?”
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In the first example, the right-hand side would report to call {t, g}
mutually exclusively and this allows us to see that the call to t does not
lie on the recursive path, so there will be at most one call to t in every run
of the recursion. We also need the information that the body of the let
(which reports {g}) and the right-hand side of g both call g at most once;
if the recursion were started multiple times, or were not linear, then we
would get many calls to t as well.

3.1.5 Co-call analysis

The final puzzle in this sequence is the code

let t1 = foo x
in let g x = if x > 10

then t1
else let t2 = bar x

in let h y = if y > 10
then g (t2 y)
else h (y+1)

in h 1 x
in g 1 2.

which shows the shortcomings of the previous iteration and the strength
of the actual co-call analysis.

Note that both recursions are well-behaved: They are entered once and
each recursive function calls either itself once or calls the thunk t1 resp. t2
once. So we would like to see both t1 and t2 eta-expanded. Unfortunately,
with the analysis above, we can only get one of them.

The problematic subexpression is g (t2 y): We need to know that g is
called at most once and that t2 is called at most once. But we cannot return
{g, t2} as that is a lie – they are not mutually exclusive – and the best we
can do is to arbitrarily return either {g} or {t2}.

To avoid this dilemma we extend the analysis one last time, in order to
preserve all valuable information.
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We now ask, for each expression:

“If this expression is called once with n arguments, for each
free variable, what is a lower bound on the number of argu-
ments passed to it, and for each pair of free variables, can both
be called during the same execution of the expression?”

The latter tells us, as a special case, whether one variable may be called
multiple times.

For the problematic expression g (t2 y) we would find that g might
be called together with t2, but neither of them is called twice. For the
right-hand side of h the analysis would tell us that either h is called at
most once and on its own, or g and t2 are called together, but each at most
once. The whole inner let therefore calls t2 and g at most once, so we get
to eta-expand t2 and learn that the outer recursion is well-behaved.

3.2 The type of co-call graphs

This information – i.e. which pairs of variables can both be called during
the same execution – can be represented by a graph on the set of variables.
These graphs are undirected, non-transitive and can have loops. I denote
the set of such graphs with Graph, and the intuition is that
• only the nodes of G (denoted by dom G) are called, and that
• an edge x—y ∈ G indicates that x and y can be called together,

while the absence of an edge guarantees that calls to x resp. y are
mutually exclusive.

In particular, the absence of a loop, i.e. x—x ∈ G, implies that x is called
at most once.

Example
Consider the three graphs

G1 = x y ,

G2 = x y , and

G3 = x y .
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The first graph allows at most one call to y and at most one call to x, both
of which can occur together. In contrast, the graph G2 allows any number
of calls to y, together with at most one call to x, while G3 describes that
any execution performs either at most one call to x or any number of calls
to y. �

I often identify the graphs with their set of edges, e.g. in the definition
of the Cartesian product of two sets of variables, which is

V ×V′ := {x—y | x ∈ V ∧ y ∈ V′ ∨ y ∈ V ∧ x ∈ V′},

and specify its set of nodes separately – which in this case is given by
dom (V ×V′) := domV ∪ domV′.

I write V2 := V ×V for the complete graph on the variables in the set
V.

The set of neighbours of a variable is Nx(G) := {y | x—y ∈ G}. The
graph G \ V is G with nodes in V removed, while G

∣∣
V is G with only

nodes in V retained.
The graphs are obviously partially ordered by inclusion, i.e.

G v G′ ⇐⇒ dom G ⊆ dom G′ ∧ G ⊆ G′,

with the empty graph {} being the least element.

3.3 The Call Arity analysis

Thus having motivated the need for a co-call-based analysis in order to
get a precise arity analysis, I devote this section to a formal description of
it. I build on the syntax introduced in Section 2.1, allowing expressions as
arguments in function calls.

3.3.1 The specification

The goal of the analysis is to determine the call arity of every variable x.
As defined in Section 1.5, this is a natural number αx indicating that the
compiler can replace the binding let x = e with let x = ńz1 . . . zα. e z1 . . . zα

without losing any sharing.
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The bottom-up analysis considers each expression e under the assump-
tion of an incoming arity α – which is the number of arguments the ex-
pression is currently being applied to – and determines with at least how
many arguments e calls its free variables, and which free variables can be
called together. Separating these two aspects into two functions, we have

Aα : Exp→ (Var ⇀ N) arity analysis

Gα : Exp→ Graph co-call analysis

where ⇀ denotes a partial map and Graph is the type of undirected graphs
(with self-edges) over the set of variables.

The informal specifications for Aα and Gα are
• If Aα(e) x = m, then every call from e (applied to α arguments) to x

passes at least m arguments.
• If x1 and x2 are not adjacent in Gα(e), then no execution of e (applied

to α arguments) will call both x1 and x2. In particular, if x—x /∈
Gα(e), then x will be called at most once.

We can define a partial order on the results that expresses the notion of
precision: If x is correct and x v y, then y is also correct, but possibly less
precise.

In particular for A, A′ : (Var ⇀ N) we have

A v A′ ⇐⇒ ∀x ∈ dom (A). A x ≥ A′ x

(note the contravariance), because it is always safe to assume that x is
called with fewer arguments.

The partial order on Graph introduced in Section 3.2 is also compatible
with this notion of precision: If we have G v G′, then every behaviour that
is allowed by G is also allowed by G′, as it is always safe to pessimistically
assume that any two variables are called together, or to assume that one
variable is called multiple times.

Thus the always correct and least useful analysis result maps every
variable to 0 (making no statements about the number of arguments
passed to them), and returns the complete graph on all variables as the
co-call graph (allowing everything to be called with everything else).

The bottom of the lattice, i.e. the best information, is the empty map
and the empty graph. This is the analysis result we expect for closed
values such as (ńy. y) or Ct.
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Aα(x) = [x 7→ α]

Gα(x) = x

Aα(e1 e2) = Aα+1(e1) tA0(e2)

Gα(e1 e2) =

{
Gα+1(e1) t {x}2 t fv(e1)× {x} if e2 = x
Gα+1(e1) t G0(e2) t fv(e1)× fv(e2) otherwise

A0(ńx. e) = A0(e)

Aα+1(ńx. e) = Aα(e)

G0(ńx. e) = (fv e)2

Gα+1(ńx. e) = Gα(e)

Aα(e ? e1 : e2) = A0(e) tAα(e1) tAα(e2)

Gα(e ? e1 : e2) = G0(e) t Gα(e1) t Gα(e2) t fv e× (fv(e1) ∪ fv(e2))

Figure 12: The Call Arity analysis equations

3.3.2 The equations

From the specification we can derive equations for every syntactical con-
struct, given in Figs. 12, 13 and 14.

Note that from the above definition of v, the least upper bound of two
arity analysis results A, A′ ∈ (Var ⇀ N) is the pointwise minimum.

Case 1: Variables

Evaluating a variable with an incoming arity of α yields a call to that
variable with α arguments, so the arity analysis returns a singleton map.
Because we are interested in the effect of one call to the expression, we
return x as called at-most once, i.e. the graph has the node x, but no edges.

Case 2: Application

In this case, the incoming arity is adjusted: If e1 e2 is being called with α
arguments, then e1 is called with α + 1 arguments. On the other hand we
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do not know how many arguments e2 is called with – this analysis is not
higher order (see Section 3.6.2) – so we analyse it with an incoming arity
of 0.

The co-call analysis reports all possible co-calls from both e1 and e2.
Additionally, it reports that everything that may be called by e1 can be
called together with everything called by e2.

In the evaluation of a Core program, an argument to a function is shared
and thus evaluated only once. Therefore, the co-call information in G0(e2)
can be used as is. There is, however, an exception: If the argument is
trivial, i.e. a variable x, the Core-to-STG transformation does not introduce
an explicit binding for the argument, and no sharing happens at this point.
So if e1 uses its argument more than once, x will itself be called multiple
times. Hence the analysis pessimistically includes {x}2 in the result.
This corner case was not handled in an earlier version of Call Arity, see
Section 4.5.2 for a discussion of this bug.

Case 3: Lambda abstraction

For lambda abstractions, we have to distinguish two cases. The good case
is if the incoming arity is nonzero, i.e. we want to know the behaviour of
the expression when applied once to some arguments. In that case, we
know that the body is evaluated once, applied to one argument less, and
the co-call information from the body can be used directly.

If the incoming arity is zero we have to assume that the lambda abstrac-
tion is used as-is, for example as a parameter to a higher-order function,
or stored in a data type. In particular, it is possible that it is going to be
called multiple times. So while the incoming arity on the body of the
lambda stays zero (which is always correct), we cannot obtain any useful
co-call results and have to assume that every variable mentioned in e is
called with every other.

Naturally, there is no point in passing arity or co-call information about
the abstracted variable out of its scope. In the interest of a concise pre-
sentation, this is not explicated in Fig. 12. Section 4.3.4 contains a more
pedantic formal presentation.
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Example
The expression e = ńx. (x0 ? x1 : x2) will, when analysed with an incoming
arity of 1 resp. 0 yield

G1(e) = x0
x1

x2
, resp. G0(e) = x0

x1

x2
. �

Case 4: Case analysis

The arity analysis of a case expression is straightforward: The incoming
arity is fed into each of the alternatives, while the scrutinee is analysed
with an incoming arity of zero; the results are combined using t.

The co-call analysis proceeds likewise. Furthermore, extra co-call edges
are added, connecting everything that may be called by the scrutinee with
everything that may be called in the alternatives – analogous to analysing
applications.

This may be an over-approximation: The analysis will yield

G0((z ? x1 : x2)(z ? x3 : x4)) = z
x1

x2

x3

x4

which contains the edge x1—x4, although x1 cannot be called together
with x4 (and analogously for x2—x3), as the conditionals will choose the
same branch in both cases.

Case 5: Non-recursive let

This case is slightly more complicated than the previous, so we describe it
in multiple equations in Fig. 13.

We analyse the body of the let-expression first, using the incoming arity
of the whole expression. Based on that we determine our main analysis
result, the call arity of the variable. There are two cases:

1. If the right-hand side expression e1 is a thunk and the body of the
let may possibly call it twice, i.e. there is a self-loop in the co-call
graph, then there is a risk of losing work when eta-expanding e1, so
we do not do that.
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αx =

{
0 if x—x ∈ Gα(e2) and ¬isVal(e1)

Aα(e2) x otherwise

Grhs =

{
Gαx (e1) if x—x /∈ Gα(e2) or αx = 0
fv(e1)

2 otherwise

E = fv(e1)× Nx(Gα(e2))

A = Aαx (e1) tAα(e2)

G = Grhs t Gα(e2) t E

Aα(let x = e1 in e2) = A Gα(let x = e1 in e2) = G

Figure 13: Equations for a non-recursive let x = e1 in e2

2. Otherwise, the call arity is the minimum number of arguments
passed to x by the code in e2, as reported by Aα(e2).

Depending on this result we need to adjust the co-call information
obtained from e1. Again, there are two cases:

1. We can use the co-call graph from e1 if e1 is evaluated at most once.
This is obviously the case if x is called at most once in the first place.
It is also the case if e1 is (and stays!) a thunk, because its result will
be shared and further calls to x can be ignored here.

2. If e1 may be evaluated multiple times we cannot get useful co-call
information and therefore return the complete graph on everything
that is possibly called by e1.

Finally we combine the results from the body and the right-hand side,
and add the appropriate extra co-call edges. We can be more precise
than in the application case because we can exclude variables that are not
called together with x from the complete bipartite graph.

Note again that we do not clutter the presentation here with removing
the local variable from the final analysis results. The implementation
removes x from A and G before returning them.
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Example
Consider the expression

e = let z = (x ?(ńy. x2) : x3) in ń_. (x1 ? x2 : z y)

with an incoming arity of 1. The co-call graph of the body is

G1(ń_. (x1 ? x2 : z y)) = x1
x2

z y

and A1(ń_. (x1 ? x2 : z y)) z = 1. The right-hand side of z’s definition is
a thunk, so we must be careful when eta-expanding it. But there is no
self-loop at z in the graph, so z is called at most once. The call-arity of z is
thus αz = 1 and we analyse its right-hand side with an incoming arity of
1 to obtain

G1(x ?(ńy. x2) : x3) = x
x2

x3.

The additional edges E connect all free variables of the right-hand side
({x, x2, x3}) with everything called together with z from the body ({x1, y})
and the overall result (skipping the now out-of-scope z) is

G1(e) = x
x2

x3

x1

y.

Note that although x2 occurs in both the body and the right-hand side,
there is no self-loop at x2: The analysis has detected that x2 is called at
most once.

The results are very different if we analyse e with an incoming arity of
0. The body is a lambda abstraction, so it may be called many times, and
we have

G0(ń_. (x1 ? x2 : z y)) = x1

x2

z
y .

This time there is a self-loop at z, and we need to set αz = 0 to be on the
safe side. This also means that z stays a thunk and we still get some useful
information from the right-hand side:
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G0(x ?(ń_. x2) : x3) = x
x2

x3.

Due to the lower incoming arity we can no longer rule out that x2 is called
multiple times, as it is hidden inside a lambda abstraction. The final graph
now becomes quite large, because everything in the body is potentially
called together with z:

G0(e) = x1

x2

y

x

x3
.

This is almost the complete graph, but it is still possible to derive that x
and x3 are called at most once. �

Case 6: Recursive let

The final case is the most complicated. It is also the reason why the figures
are labelled “Equations” and not “Definitions”: They are also mutually
recursive and it is the task of the implementation to find a suitable solution
strategy (see Section 3.4.2).

The complication arises from the fact that the result of the analysis
affects its parameters: If the right-hand side of a variable calls itself with
a lower arity than the body, we need to use the lower arity as the call
arity. Therefore, the final result (A and G in the equations) is also used
to determine the basis for the call-arity and co-call information of the
variables.

Thunks aside, we can think of one recursive binding let x = e1 in e2 as
an arbitrarily large number of nested non-recursive bindings

let x = e1
in let x = e1

in let x = e1
in . . . let x = e1

in e2.

The co-call information G can be thought of the co-call information of this
expression, and this is how xi—xi /∈ G has to interpreted: Not that there
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A = Aα(e) t
⊔

i
Aαxi

(e1)

G = Gα(e) t
⊔

i
Gi t

⊔
i

Ei

αxi =

{
0 if ¬isVal(ei)

A xi otherwise

Gi =

{
Gαxi

(ei) if xi—xi /∈ G or αxi = 0

fv(ei)
2 otherwise

Ei =

{
fv(ei)× N(Gα(e) t

⊔
j Gj) if αxi 6= 0

fv(ei)× N(Gα(e) t
⊔

j 6=i Gj) if αxi = 0

N(G) = {z | z—xi ∈ G, i = 1 . . .}

Aα(let xi = ei in e) = A Gα(let xi = ei in e) = G

Figure 14: Equations for a recursive let xi = ei in e

is at most one call to xi in the whole recursion (there probably are many,
why else would there be a recursive let), but rather that when doing such
an unrolling of the recursion, there is at most one call to xi leaving the
scope of the outermost non-recursive let.

This analogy is flawed for thunks, where multiple nested non-recursive
bindings would have a different sharing behaviour. Therefore, I set αxi =
0 for all thunks in a recursive let; this preserves sharing.

The formulas for the additional co-calls Ei are a bit more complicated
than in the non-recursive case, and differ for thunks and non-thunks.
Consider one execution that reaches a call to xi. What other variables
might have been called on the way? If the call came directly from the
body e, then we need to consider everything that is adjacent to xi in Gα(e).
But it is also possible that the body has called some other xj, j 6= i and ej
then has called xi – in that case, we need to take those variables adjacent
to xj in Gα(e) and those adjacent to xi in Gj.
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In general, every call that can occur together with any recursive call in
any of the expressions can occur together with whatever xi does.

For a thunk we can get slightly better information: A non-thunk ei can
be evaluated multiple times during the recursion, so its free variables can
be called together with variables on ei’s own recursive path. A thunk,
however, is evaluated at most once, even in a recursive group, so for the
calculation of additional co-call edges it is sufficient to consider only the
other right-hand sides (and the body of the let, of course).

Example
Consider the expression

let x1 = ńy. (y1 ? x2 y : z1)

x2 = ńy. (y2 ? x1 y : z2)

in ńy. x1 y y

with an incoming arity of 1. It is an example for a nice tail-call recursion
as it is commonly produced by list fusion: The body has one call into the
recursive group, and each function in the group also calls at most one of
them.

The minimal solution to the equations in Fig. 14 in this example is

G1(e) = {}
αx1 = αx2 = 2

G1 = G2(e1) = {y1} × {x2, z1}
G2 = G2(e2) = {y2} × {x1, z2}

E1 = {y1, x2, z1} × {y1, y2}
E2 = {y2, x1, z2} × {y1, y2}

and the final result is

G = x1
x1

x2

y1

y2

z1

z2
,

where we see that at most one of z1 and z2 is called by the recursive group,
and neither of them twice.
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In contrast consider this recursion which forks in x2:

let x1 = ńy. (y1 ? x2 y : z1)

x2 = ńy. (y2 ? x1 (x1 y y) : z2)

in ńy. x1 y y.

We see that now z1 and z2 are possibly called together and multiple times.
Indeed x1—x1 ∈ G2(e2) causes x1 ∈ N(. . .) in the equation for Ei, so
especially x1—x1 ∈ E2 ⊆ G. Therefore, G1 = fv(e1)

2 and we also have
x2—x2 ∈ G and G2 = fv(e2)

2. Eventually, we find that the result is the
complete graph on all variables, i.e. E = {x1, x2, y1, y2, z1, z2}2, and in
particular z1—z2 ∈ E, as expected. �

3.4 The implementation

This section is of primary interest to those readers who want to understand
the implementation of Call Arity in GHC. I explain some of the design
choices and how the the code relates to the definitions in this thesis.

The Call Arity analysis is implemented in GHC as a separate Core-to-
Core pass, where Core is GHC’s typed intermediate language based on
System FC (cf. Section 1.4.1). See Appendix B.2 for the code of the analysis.

This pass does not actually do the eta-expansion; it merely annotates
let-bound variables with their call arity. A subsequent pass of GHC’s
simplifier then performs the expansion, using the same code as for the
regular, definition-based arity analysis, and immediately applies optimi-
sations made possible by the eta-expansion. This separation of concerns
keeps the Call Arity implementation concise and close to the formalisation
presented here.

GHC Core obviously has more syntactical constructs than our toy
lambda calculus, including literals, coercion values, casts, profiling an-
notations (“ticks”), type lambdas and type applications, but these are
irrelevant for our purposes: For literals and coercion values Call Arity
returns the bottom of the lattice; the others are transparent to the analy-
sis. In particular type arguments are not counted towards the arity here,
which coincides with the meaning of arity as returned by GHC’s regular
arity analysis.
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I want the analysis to make one pass over the syntax tree (up to the
iterative calculation of fixed points for recursive bindings, Section 3.4.2).
So instead of having two functions – one for the arity analysis and one
for the co-call analysis – I defined one function callArityAnal which re-
turns a tuple (UnVarGraph, VarEnv Arity), where the UnVarGraph is a data
structure for undirected graphs on variable names (see Section 3.4.4) and
VarEnv Arity is a partial map from variable names to Arity, which is a type
synonym for Int.

The equations refer to fv e, the set of free variables of an expression.
In the implementation, I do not use GHC’s corresponding function ex-
prFreeIds, as this would require another traversal of the expression. Instead
I use dom (Aα(e)), which by construction happens to be the set of free
variables of e, independent of α, as at this stage in the compiler pipeline,
“obviously” dead code has been removed.

In the sequence of Core-to-Core passes, I inserted Call Arity and its eta-
expanding simplifier pass after the simplifier’s phase 0, as that is when
all the rewrite rules have been active [PTH01], and before the strictness
analyser. This way, the latter has a chance to unbox any new function
parameters introduced by Call Arity, such as the accumulator in a call to
sum.

3.4.1 Interesting variables

The analysis as presented in the previous section would be too expensive if
implemented as is. This can be observed when compiling GHC’s DynFlags
module, which defines a record type with 157 elements. The Core code
for a setter of one of the fields is

setX42 x (DynFlags x1 . . . x41 _ x43 . . . x157)
= (DynFlags x1 . . . x41 x x43 . . . x157).

For the body of the function, the analysis would report that 157 variables
are called with (at least) 0 arguments, and that all of them are co-called
with every other, a graph with 12246 edges. And none of this information
is useful: The variables come from function parameters or pattern matches
and there is no definition that we can possibly eta-expand!
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Therefore, the code keeps track of the set of interesting variables, and
only returns information about them. Currently, interesting variables are
all let-bound variables of function type, while function parameters and
pattern match variables are not interesting.

Generally, considering fewer variables as interesting will trade precision
for performance, but preserves soundness: It would be perfectly sound,
for example, to consider the variables of a very large recursive group to
be uninteresting.

The complete type signature of the analysis is therefore

callArityAnal :: Arity → VarSet → CoreExpr →
((UnVarGraph, VarEnv Arity), CoreExpr)

where the arguments are
• the incoming arity,
• the set of interesting variables and
• the expression to analyse

and the return values are the co-call graph and arity information (both
restricted to the set of interesting variables) and the expression with the
Call Arity result annotation added.

3.4.2 Finding the fixed points

The equations in the previous section specify the analysis, but do not
provide an algorithm: In the case of a recursive let (Fig. 14), the equations
are mutually recursive and the implementation has to employ a suitable
strategy to find a solution.

The implementation finds the solution by iteratively approaching the
fixpoint, using memorisation of intermediate results.

1. Initially, it sets A = Aα(e) and G = Gα(e).
2. For every variable xi ∈ dom A that has not been analysed before, or

has been analysed before with different values for αxi or xi—xi ∈ G,
it (re-)analyses it, remembering the parameters and memorising the
result Aαxi

(e1) and Gi.
3. If any variable has been (re)analysed in this iteration, it recalculates

A and G and repeats from step 2.
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This process will terminate, as shown by a simple standard argument:
The variant that proves this consists of αxi and whether xi—xi ∈ G. The
former starts at some natural number and decreases, the latter may start
as not true, but once it is true, it stays true. Therefore, these parameters
can change only a finite number of times, and the loop terminates once
all of them are unchanged during one iteration. The monotonicity of the
parameters follows from the monotonicity of the equations for Aα and Gα:
We have that α ≥ α′ implies Aα(e) v Aα′(e) and Gα(e) v Gα′(e).

3.4.3 Top-level values

GHC supports modular compilation. Therefore, for exported functions,
the compiler does not have the call sites available to analyse. Nevertheless
I do want it to be able to analyse and eta-expand at least non-exported
top-level functions.

To solve this elegantly I treat a module

module Foo(foo) where
bar = . . .
foo = . . .

as if it were a sequence of let-bindings

let bar = . . . in
let foo = . . . in
e

where e represents the external code for which I assume the worst: It calls
all exported variables (foo here) with 0 arguments and the co-call graph is
the complete graph. This prevents unwanted expansion of foo, but still
allows us to eta-expand bar based on how it is called by foo.

Unfortunately, it also means that adding a top-level function to the
export list of the module can prevent Call Arity from eta-expanding it and
other functions in the module. If, for example, I export all difference-list
producing functions in the code mentioned in Section 3.5.3, then I lose
the benefits from Call Arity. In this sense, Call Arity can be considered
a whole program analysis that happens to be useful in a setting with
separate compilation as well.
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3.4.4 The graph data structure

The analysis often builds complete bipartite graphs and complete graphs
between sets of variables. A usual graph representation like adjacency
lists would be quadratic in size and too inefficient for this use.

Hence, the data type UnVarGraph used in the implementation is specifi-
cally crafted for this purpose, see Appendix B.1 for the code. It represents
graphs symbolically, as multisets (“bags” in the lingua of GHC code) of
complete bipartite and complete graphs:

data Gen = CBPG VarSet VarSet
| CG VarSet

type UnVarGraph = Bag Gen

This allows for very quick, O(1), creation and combination of graphs. The
important query operation, calculating the set of neighbours of a node, is
done by traversing the generating subgraphs.

One disadvantage of this data structure is that it does not normalise the
representation. In particular, the union of a graph with itself is twice as
large. I had to take that into account when I implemented the calculation
of fixed points: It would be very inefficient to update G by merging it with
the new results in each iteration. Instead, G is always reassembled from
Gα(e) and the – new or memorised – results from the bound expressions.

I experimented with simplifying the graph representation using identi-
ties like S1 × S2 ∪ S2

1 ∪ S2
2 = (S1 ∪ S2)

2, but it did not pay off, especially
as deciding set equality can be expensive.

3.5 Discussion

3.5.1 Call Arity and list fusion

As hinted at in the introduction, I devised Call Arity mainly to allow for a
fusing foldl, i.e. a definition of foldl in terms of foldr that takes part in list
fusion while still producing good code. How exactly does Call Arity help
here?

Consider the code sum (filter f [42..2016]). Previously, only filter would
fuse with the list comprehension, eliminating one intermediate list, but
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the call to sum, being a left-fold, would remain: Compiled with previous
versions of GHC, this produces code roughly equivalent to

let go = ńx → let r = if x == 2016
then []
else go (x + 1)

in if f x then x : r else r
in foldl (+) 0 (go 42).

If we changed the definition of foldl to use foldr, as in

foldl k z xs = foldr (ńv fn z → fn (k z v)) id xs z.

all lists are completely fused and we obtain the code

let go = ńx → let r = if x == 2016
then id
else go (x + 1)

in if f x
then ńa → r (a + x)
else r

in go 42 0.

Without Call Arity, this was the final code, and as such quite inefficient:
The recursive loop go has become a function that takes one argument, then
allocates a function closure for r on the heap, and finally returns another
heap-allocated function closure which will pop the next argument from
the stack – not the fastest way to evaluate this simple program.

With Call Arity the compiler detects that go and r can both safely be
eta-expanded with another argument, yielding the code

let go = ń x a → let r = ńa → if x == 2016
then a
else go (x + 1) a

in if f x
then r (a + x)
else r a

in go 42 0
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where the number of arguments passed matches the number of lambdas
that are manifest on the outer level. This avoids allocations of function
closures and allows the runtime to do fast calls [MP06], or even tail-
recursive jumps.

3.5.2 Limitations

A particularly tricky case is list fusion with generators with multiple (or
non-linear) recursion. This arises when flattening a tree to a list. Consider
the code

data Tree = Tip Int | Bin Tree Tree

toList :: Tree → [Int]
toList tree = build (toListFB tree)

toListFB root cons nil = go root nil
where
go (Tip x) rest = cons x rest
go (Bin l r) rest = go l (go r rest)

which is a good producer; for example filter f (toList t) is compiled to

let go = ńt rest → case t of
Tip x → if f x then x : rest else rest
Bin l r → go l (go r rest)

in go t [].

If we add a left-fold to the pipeline, i.e. foldl (+) 0 (filter f (toList t)),
where the foldl is implemented via foldr, the resulting code (before Call
Arity) is

let go = ńt fn → case t of
Tip x → if f x then (ńa → fn (x + a)) else fn
Bin l r → go l (go r fn)

in go t id 0.



112 Call Arity

Although go is always being called with three arguments, my analysis
does not see this. For that it would have to detect that go calls its sec-
ond parameter with one argument; as it is a forward analysis (in the
nomenclature of [XP05]) it cannot do that.

And even if GHC could eta-expand it (in fact it can, due to the one-shot
annotation discussed in Section 3.6.3), the result would not be much better:
For the recursion, the runtime still needs to create a function closure for
the unsaturated call go r fn, which is then called slowly by go, as explained
in Section 1.4.3.

Things look better if we adjust the definition of toList so that the worker
is tail-recursive. This requires an explicit stack, keeping track of the
branches of the tree that are yet to be visited:

toListFB root cons nil = go root nil []
where
go (Tip x) s = cons x (goS s)
go (Bin l r) s = go l (r:s)
goS [] = nil
goS (x:xs) = go x xs

Now the resulting code is a nice tail-recursive loop, and it even allows
GHC to unbox the accumulator, which usually provides a large perfor-
mance benefit.

But the code that we would really want to see, and which we would
write by hand, is

let go = ńt a → case t of
Tip x → if f x then a + x else a
Bin l r → go l (go r a)

in go t 0

with no continuations or explicit stack whatsoever and just the accumu-
lator (unboxed by GHC) is being passed through the recursion. Such a
transformation would require much more involved changes to the code
than just eta-expansion followed by simplification, and is out of scope for
Call Arity.
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We (the GHC developers) still decided to let foldl take part in list fusion
based on the benchmark results, presented in the next section. They
indicate that the real-world benefits in the common case of linear recursion
are larger than the penalty in the non-linear recursion, and if necessary,
the producer can be adjusted to be linearly recursive.

3.5.3 Measurements

No work on compiler optimisations without some benchmark results! I
compare four variants, all based on the GHC 7.10.3 codebase (revision
97e7c29):

(A) For the baseline, I removed the Call Arity analysis code and undid the
changes to the library code, i.e. reverted foldl to its naive, non-fusing
definition.

(B) To measure the effect of Call Arity analysis alone I enable it again,
but left foldl with the naive definition.

(C) The current, unmodified state of the compiler, with Call Arity enabled
and foldl implemented via foldr, is the most relevant variant; in the
table this column is highlighted.

(D) To assess the importance of Call Arity for allowing foldl to take part
in list fusion, I also measure GHC without Call Arity, but with foldl
implemented via foldr.

Setup

The ubiquitous benchmark suite for Haskell is nofib [Par93], a set of 100
example Haskell programs, ranging from small micro-benchmarks to
“real” applications. Most benchmarks support different modes to make
them run longer. My numbers all result from the “slow” mode.

The measurements are taken on an 8-core Intel i7-3770 machine with
16 GB of RAM running Ubuntu 14.04 on Linux 3.13.0.

Initially, I attempted to use the actual run time measurements, but it
turned out to be a mostly pointless endeavour. For example the knights
benchmark would become 9% slower when enabling Call Arity (i.e. when
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comparing (A) to (B)), a completely unexpected result, given that the
changes to the GHC Core code were reasonable. Further investigation
using performance data obtained from the CPU indicated that with the
changed code, the CPU’s instruction decoder was idling for more cycles,
hinting at cache effects and/or bad program layout.

Indeed: When I compiled the code with the compiler flag -g, which
includes debugging information in the resulting binary, but should oth-
erwise not affect the relative performance characteristics much, the un-
expected difference vanished. I conclude that non-local changes to the
Haskell or Core code will change the layout of the generated program
code in unpredictable ways and render such run time measurements
mostly meaningless.

This conclusion has been drawn before [MDHS09], and recently, tools
to mitigate this effect, e.g. by randomising the code layout [CB13], were
created. Unfortunately, these currently target specific C compilers, so I
could not use them here.

In the following measurements, I avoid this problem by not measuring
program execution time, but simply by counting the number of instruc-
tions performed. This way, the variability in execution time due to code
layout does not affect the results. To obtain the instruction counts I em-
ploy valgrind [NS07], which runs the benchmarks on a virtual CPU and
thus produces more reliable and reproducible measurements.

Results

My results are shown in Table 1. The three columns correspond to the
variants (B), (C) and (D) described above, and the given percentages are
changes relative to (A). Negative numbers indicate improvement. I list
those benchmarks where there a difference of 1% or more is observed.

As expected, enabling Call Arity does not increase the number of dy-
namic allocations; if it did, something would be wrong – see Chapter 4
for a formal proof of that statement.

On its own, the analysis rarely has an effect: Programmers tend to give
their functions the right arities in the first place, and this includes the code
in nofib.
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Table 1: Nofib results, relative to (A)
Bytes allocated Instructions executed

(B) (C) (D) (B) (C) (D)
Arity Analysis X X X X
Co-call Analysis X X X X
foldl via foldr X X X X

anna -1.5% -1.7% +0.1% -0.5% -0.4% +0.7%
bernouilli -0.0% -4.2% +4.5% +0.0% -3.5% +22.5%
binary-trees -0.0% -0.0% 0.0% -7.3% -7.3% -0.0%
fem 0.0% -2.6% -1.6% -0.0% -4.4% -1.4%
fft2 -0.0% -48.2% -48.1% +0.0% -18.6% -14.3%
fibheaps -4.5% -4.5% 0.0% -12.0% -12.0% -0.0%
fish -5.1% -5.1% 0.0% -3.9% -3.9% +0.0%
fluid -0.3% -8.4% -7.7% +0.7% -3.6% -4.5%
fulsom -0.4% -0.4% 0.0% -1.5% -1.5% +0.0%
gen_regexps 0.0% -53.9% +33.8% -0.0% -7.8% +205.8%
gg 0.0% 0.0% 0.0% +0.0% +0.0% -1.1%
hidden -0.2% -6.0% +1.2% -0.3% -4.6% +1.2%
hpg -0.1% -1.3% -1.2% -0.0% -1.8% -0.8%
integrate -0.0% -60.9% -60.9% +0.0% -47.2% -47.2%
lcss -0.0% -0.0% 0.0% -2.5% -2.5% -0.0%
life -0.0% -0.0% +0.0% -0.3% -0.3% +2.1%
maillist 0.0% 0.0% 0.0% -0.1% -0.6% +1.0%
minimax 0.0% -15.5% +4.0% -0.0% -13.6% +4.7%
scs -1.7% -2.5% +0.4% -1.5% -1.9% -0.2%
simple 0.0% -9.4% +8.2% -0.0% -1.9% +17.6%
x2n1 -0.0% -77.4% +84.0% -0.0% -8.3% +245.7%
. . . and 78 more

Min -5.1% -77.4% -60.9% -12.0% -47.2% -47.2%
Max 0.0% +0.0% +84.0% +0.7% +0.8% +245.7%
Geometric Mean -0.2% -4.5% -0.6% -0.3% -1.7% +2.0%
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Table 2: Difference list speedup
Running time

Call Arity X X X
showInt exported X X
go exported X

String 129ms 128ms 128ms 136ms
DList 151ms 84ms 131ms 130ms

Some of the improvements, e.g. in fibheaps, can be attributed to the
use of take: Even before the introduction of Call Arity, it was set up to
be a good consumer, producing similar higher-order code as foldl would.
Call Arity can successfully optimise that.

But the real strength of Call Arity can only be seen in combination with
making foldl a good consumer: Allocation improves considerably and
without the analysis, this change to foldl would actually degrade the run
time performance.

The last column (D) shows that without Call Arity, making foldl a good
consumer is a bad idea, and that in some cases, the number of allocations
and instructions go through the roof.

Difference lists

Another setting, besides list fusion, where non-expanded function def-
initions may emerge is when function types are hidden behind a type
abstraction, and combined using abstract combinators. A good example
for this is the type of difference lists, which represent lists as functions of
type [a] → [a]. Module DList in Fig. 15 contains a standard implemen-
tation of difference lists. Note that all combinators are eta-reduced: The
argument providing the tail of the list is omitted.

As a micro-benchmark, the code in module Bench in Fig. 15 converts
a list of non-negative integers into their decimal representation, space
separated.

Table 2 lists the execution time of applying doIt to a list of 1,000,000
integers, measured using criterion [OSu15]. We can see that without the
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module DList where
newtype DList a = DL ([a] → [a])

fromDList :: DList a → [a]
fromDList (DL f) = f []

singleton :: a → DList a
singleton c = DL (c:)

empty :: DList a
empty = DL id

(<>) :: DList a → DList a → DList a
DL f <> DL g = DL (f . g)

module Bench (doIt) where
import DList
import Data.Char (intToDigit)

showInt :: Int → DList Char
showInt n | n < 10 = singleton (intToDigit n)

| otherwise = showInt (n ‘div‘ 10) <> showInt (n ‘mod‘ 10)

go :: [Int] -> DList Char
go [] = empty
go (x:xs) = showInt x <> singleton ’ ’ <> go xs

doIt :: [Int] → String
doIt xs = fromDList (go xs)

Figure 15: Difference lists
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help of Call Arity, the code is actually 16% slower than the equivalent code
using String and string concatenation naively. With Call Arity enabled,
the difference list code runs twice as fast, beating the String code by 35%.

The benefits of Call Arity are less pronounced if some of the involved
functions are exported. In that case, the compiler has to make conservative
assumptions about how often the function is called and Call Arity cannot
eta-expand it. If showInt or go is added to the export list of module Bench
the performance advantage compared to the String version disappears in
the noise.

3.5.4 Compiler performance

Call Arity could affect the compile times in two ways: It increases them,
because the compiler does more work. But it also reduces them, as the
compiler itself has been optimised more. Table 3 shows the change in
allocations done and time spent by the compiler while compiling the nofib
test suite, as well as while compiling GHC itself.

In the nofib row we can see that the latter is indeed happening – en-
abling Call Arity reduces the number of allocations performed by the
compiler, despite it doing more work – but this does not incur a signif-
icant change in compiler run time. The change to foldl alone increases
compile times slightly.

In the second row, there is a third factor: The code base itself increases,
due to the addition of the Call Arity code itself, which is reflected by the
benchmark results.

Table 3: Compiling nofib and GHC, relative to (A)
Bytes allocated Compile time

(B) (C) (D) (B) (C) (D)
Arity Analysis X X X X
Co-call Analysis X X X X
foldl via foldr X X X X

nofib -0.1% -0.1% +0.1% -0.1% -1.4% +0.3%
ghc +3.8% +3.8% -0.0% +5.7% +6.0% -0.2%
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Note that the benchmark suite is not designed to produce stable mea-
surements of compile time, e.g. the compiler is run only once, so the
significance of these numbers should not be taken too serious.

Ağacan measured the contribution of individual compiler passes to
the overall compilation time, by compiling selected, widely used Haskell
libraries and their dependencies. He reported his findings on the GHC
developer’s mailing list11, and found that Call Arity is responsible for
1.1% of the compilation time.

3.6 Related work

Andrew Gill mentions in his thesis on list fusion [Gil96] that eta-expansion
is required to make foldl a good consumer that produces good code, and
outlines a simple arity analysis. It does not discuss thunks at all and is
equivalent to the second refinement in Section 3.1.

3.6.1 GHC’s arity analyses

The compiler already comes with an arity analysis, which works com-
plementary to Call Arity: It ignores how functions are being used and
takes their definition into account. It traverses the syntax tree and for each
expression returns its arity, i.e. the number of arguments the expression
can be applied to before doing any real work. This allows the transfor-
mation to turn x ?(ńy. e1) :(ńy. e2) into ńy. (x ? e1 : e2) on the grounds that
the check whether x is true or false is a negligible amount of work, and it
is therefore better to eta-expand the expression, even if this means that
the check is done repeatedly. But this is just a heuristics, and can lead to
unwanted performance losses, e.g. if the scrutinee does a deep pattern
match.12 Therefore, Call Arity would refrain from doing this unless it
knows for sure that the expression is going to be called at most once.

This arity analyser can make use of one-shot annotations on lambda
binders. Such an annotation indicates that the lambda will be called at
most once, which allows the analysis to derive greater arities and expand

11March 29, 2016; https://mail.haskell.org/pipermail/ghc-devs/2016-March/011651.html
12See for example http://ghc.haskell.org/trac/ghc/ticket/11029.

https://mail.haskell.org/pipermail/ghc-devs/2016-March/011651.html
http://ghc.haskell.org/trac/ghc/ticket/11029
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thunks: If the lambdas in ( f x) ?(ńy. e1) :(ńy. e2) are annotated as one-shot,
this would be expanded to ńy. (( f x) ? e1 : e2).

The working notes in [XP05] describe this analysis as the forward arity
analysis. Like Call Arity, it can only determine arities of let-bound expres-
sions and will not make any use of arity information on parameters.

Consider, for example,

let g = . . .
s f = f 3

in . . . (s g) . . .

where we would have a chance to find out that g is always called with at
least one argument.

A backward arity analysis capable of doing this is also described in [XP05].
This analysis calculates the arity transformer of a function f: A mapping
from the number of arguments f is called with to the number of argu-
ments passed to f’s parameters. It is not implemented in GHC as such,
but subsumed by the combined strictness/demand/cardinality analyser:
The function s would have a strictness signature of <C(S),1*C1(U)>. The
strictness information on the left indicates that s is strict in its first argu-
ment, and also in the value returned by calling its first argument as a
function; the usage information on the right indicates that evaluating s
f will evaluate f at most once, call it at most once, and the result of that
call will be used. The latest description of this analyser can be found in
[SVP14].

Neither of these two analyses is capable of transforming the bad code
from Fig. 11 into the desired form: The former has to give up as the
expression f a might be expensive; the latter looks at the definition of goB
before analysing the body and is therefore unable to make use of the fact
that goB is always called with two arguments.

3.6.2 Higher order sharing analyses

The role of the co-call analysis in this setting is to provide a simple form of
sharing analysis (using the nomenclature of [HHM07]), which is required
to safely eta-expand thunks. Such analyses have been under investigation
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for a long time, e.g. to avoid the updating of thunks that are used at
most once, or to enforce uniqueness constraints. These systems often
support a higher-order analysis in some way, e.g. using detailed usage
types [SVP14], possibly with polyvariance [HHM07].

It would be desirable to have such expressive usage types available
in our analysis, and I do not foresee a problem in using them. It will,
however, be hard to obtain them: The co-call analysis does not just analyse
the code as it is, but rather anticipates its shape after eta-expansion based
on the Call Arity result. So in order to determine a precise higher-order
demand type for a function f, we need to know its Call Arity. For that we
need to analyse the scope of f for how it is used, which is where we want
to make use of the higher-order information on f. Going this route would
require a fixed-point iteration for every binding, which is prohibitively
expensive.

This is also why integrating Call Arity directly into GHC’s existing
demand analyser [SVP14], which analyses function bodies before their
uses, would be difficult.

Another noteworthy difference to the cited analyses is that these either
skip the discussion of recursive bindings, or treat them too imprecisely
to handle code resulting from list fusion. It would be interesting to see if
the concept of a co-call graph could be used in a stand-alone backward
sharing analysis to improve precision in the presence of recursion.

3.6.3 Explicit one-shot annotation

While I was pondering the issue of a well-fusing foldl, I was pursuing also
another way of solving the problem, besides Call Arity:

For that I created a magic, built-in function

oneShot :: (a → b) → a → b.

It is semantically the identity, but the compiler may assume that the
function oneShot f is called at most once. I can use this function when
implementing foldl in terms of foldr:

foldl k z xs = foldr (ń v fn → oneShot (ńz → fn (k z v))) id xs z
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Table 4: Measuring the effect of one-shot annotations
Bytes allocated Instructions executed

Call Arity X X X X
oneShot X X X X

anna -0.2% -1.7% -1.8% -0.6% -1.1% -1.1%
bernouilli -8.3% -8.3% -8.3% -21.3% -21.2% -21.3%
binary-trees 0.0% -0.0% -0.0% -0.0% -7.3% -7.3%
cacheprof -1.2% -0.6% -0.0% -1.6% -2.7% +0.9%
fem -1.0% -1.0% -1.0% -3.1% -3.1% -3.1%
fft2 -0.2% -0.2% -0.2% -5.2% -5.1% -5.1%
fibheaps 0.0% -4.5% -4.5% +0.0% -12.0% -12.0%
fish 0.0% -5.1% -5.1% -0.0% -3.9% -3.9%
fulsom 0.0% -0.4% -0.4% -0.0% -1.5% -1.5%
gen_regexps -65.6% -65.6% -65.6% -69.9% -69.9% -69.9%
gg 0.0% 0.0% 0.0% +1.2% +1.2% +1.1%
hidden -6.9% -7.0% -7.0% -5.5% -5.7% -5.7%
hpg 0.0% -0.1% -0.1% +0.0% -1.0% -1.0%
lcss 0.0% -0.0% -0.0% +0.0% -2.5% -2.5%
life -0.0% -0.0% -0.0% -2.7% -0.2% -2.4%
maillist +0.0% +0.0% 0.0% -1.5% -0.2% -1.6%
minimax -18.8% -18.8% -18.8% -17.5% -17.5% -17.5%
scs -1.2% -2.9% -2.9% -0.4% -2.1% -1.7%
simple -16.3% -16.3% -16.3% -16.6% -16.6% -16.6%
x2n1 -87.7% -87.7% -87.7% -73.5% -73.5% -73.5%
. . . and 80 more

Min -87.7% -87.7% -87.7% -73.5% -73.5% -73.5%
Max +0.0% +0.0% 0.0% +1.2% +1.2% +1.1%
Geometric Mean -3.7% -3.8% -3.8% -3.3% -3.6% -3.6%
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This solves our problem with the bad code generated for sum (filter f
[42..2016]) from Section 3.5.1: The compiler sees

let go = ńx → let r = if x == 2016 then id else go (x + 1)
in if f x then oneShot (ńa → r (a + x)) else r

in go 42 0

and, because the ńa is marked as oneShot, the existing arity analysis will
happily eta-expand go.

Note that oneShot is unchecked: The programmer or library author has
the full responsibility to ensure that the function is really applied only
once. This is given in the case of foldl, as we know the definition of foldr
and that it applies its argument at most once for each element of the list.

The GHC developers initially decided to go the Call Arity route because
it turned out to be no less powerful than the explicit annotation, has
the potential to optimise existing user code as well, and ensures the
correctness of the transformation.

Later, the developers decided that it does not hurt to simply employ
both approaches in GHC. The nofib benchmark suite does not exhibit such
a case, but it is quite possible that there are instances out there, maybe
similar to the tree example in Section 3.5.2, where Call Arity fails and the
oneShot annotation might save the day.

Table 4 compares the performance of
• using only oneShot,
• using only Call Arity and
• using both, as it is the case in the released version of GHC

against the baseline of GHC 7.10.3 without oneShot and Call Arity, but
with foldl implemented as foldr (i.e. variant (D) in Section 3.5.3). It shows
that in most cases, oneShot and Call Arity yield the same performance
gains, and only a few benchmarks (e.g. fibheaps, scs) show that Call
Arity is a bit more powerful.

3.6.4 unfoldr/destroy and stream fusion

There are various contenders to foldr/build-based list fusion, such as
unfoldr/destroy [Sve02] and stream fusion [CLS07]. They have no problem
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fusing foldl, but have their own shortcomings, such as difficulties fusing
unzip, filter and/or concatMap; a thorough comparison is contained in
[Cou10]. After two decades, this is still an area of active research [FHG14].

These systems are in practical use in array libraries like bytestring and
vector. For the typical uses of lists they were inferior to foldr/build-based
fusion, and hence the latter is used for the standard Haskell list type.
Given the recent advances on both fronts, a reevaluation of this choice is
due.

3.6.5 Worker-wrapper list fusion

On the GHC mailing list, Takano suggested an extension to foldr/build-
based list fusion that will generate good code for left folds directly [Tak14].
The idea is that the consumer not only specifies what the generator should
use instead of the list constructors (:) and [], but also a pair of worker-
wrapper functions.

Slightly simplified, he extends foldr to foldrW. This function takes two
additional arguments, here called wrap and unwrap, which can be used by
the consumer to specify the actual type of the recursion.

foldrW :: (forall e. f e → (e → b → b))
→ (forall e. (e → b → b) → f e)
→ (a → b → b) → b → [a] → b

foldrW wrap unwrap f z0 list0 = wrap go list0 z0
where
go = unwrap $ ń list z’ → case list of [] → z’

x:xs → f x (wrap go xs z’)

Conversely, he extends build to buildW: Besides passing the list con-
structors, this also passes a wrapper that does not actually change the
type:

newtype Simple b e = Simple { runSimple :: e → b → b }

buildW :: (forall b f . (forall e. f e → (e → b → b))
→ (forall e. (e → b → b) → f e)
→ (a → b → b) → b → b)
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→ [a]
buildW g = g runSimple Simple (:) []

This way, he can specify a fusion rule similar to the foldr/build rule:

{-# RULES
"foldrW/buildW" forall wrap unwrap f z g.

foldrW wrap unwrap f z (buildW g) = g wrap unwrap f z
#-}

Now every list consuming function that wants to benefit from this
system needs to specify a custom pair of wrapper and unwrapper func-
tions. For example, his definition of foldl in terms of the extended foldrW
becomes

foldl :: forall a b. (b → a → b) → b → [a] → b
foldl f z = ńxs → foldrW wrap unwrap g id xs z
where
wrap :: forall e. Simple b e → (e → (b → b) → (b → b))
wrap s e k a = k (s e a)
unwrap :: forall e. (e → (b → b) → (b → b)) → Simple b e
unwrap u = ńe a → u e id a
g x next acc = next (f acc x).

Conversely, list producing functions should be defined in terms of
buildW, and making sure that the wrappers are used to shape the recur-
sion:

[from..to] = buildW (eftFB from to)
eftFB from to wrap unwrap c n = wrap go from n
where
go = unwrap $ ńi rest → if i <= to

then c i (wrap go (i + 1) rest)
else rest.

This proposal initially looked promising: It handles the case of fusing
foldl well, and appears to be more powerful in tricky cases like fusing foldl
with a list produced by treeToList (see Section 3.5.2).
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Nevertheless, a thorough evaluation13 by David Feuer and Dan Doel
revealed that the system is rather unsafe: The above fusion rule is not
universally correct, and with certain combinations of producers and con-
sumers, this can yield wrong results. A way forward would be to identify
sufficient conditions about the arguments to foldrW resp. buildW that guar-
antee that fusion is safe, but so far, such conditions have not been found.
Given these problems, the GHC developers decided to not pursue this
approach any further for now.

3.6.6 Control flow based analyses

The Call Arity analysis uses domain theory to describe its result, and
iteratively finds a fixed point in the case of recursive bindings. This
suggests connections to the field of data flow analysis, where analysis
results are commonly calculated on a control-flow graph representation
of the program. It is not obvious how to represent a Core program as such
a graph, and although there are approaches to control-flow analysis of
functional programs (see [Mid12] for a recent survey), they are not used
in the Haskell compiler.

GHC does employ data flow analysis based transformations, but at a
much later phase and lower level, namely in the code generator [RDP10].
We do not want Call Arity to happen that late in the pipeline, as some
Core-to-Core transformations benefit from the effect of Call Arity, e.g. by
unboxing the accumulator of sum specialised to Int.

3.7 Future work

As usual, there is always room for improvement, both in the analysis itself
and in how it is used.

3.7.1 Improvements to the analysis

Call Arity does not fully exploit the behaviour of thunks in mutual recur-
sion. Consider this example:

13https://ghc.haskell.org/trac/ghc/ticket/9545

https://ghc.haskell.org/trac/ghc/ticket/9545
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let go x = if x > 10 then x else go (t1 x)
t1 = if f (t2 a) then (ńy → go (y+1)) else (ńy → go (y+2))
t2 = if f b then (ńy → go (y+1)) else (ńy → go (y+2))

in go 1 2

Currently, Call Arity will refrain from eta-expanding t1 and t2, as they
are part of a recursive binding. But t2 is in fact called at most once! All
calls to t2 are done by t1, and t1’s result will be shared.

It remains to be seen if such situations occur in the wild and whether
the benefits justify the implementation overhead.

3.7.2 Tighter integration into GHC

As explained in Section 3.6.2, Call Arity cannot be directly merged into
GHC’s existing demand analyser [SVP14], as they need to process let-
bindings in a different order.

There is, however, a potential for better cooperation of Call Arity with
the existing analyses and transformations in both directions:

Call Arity could make some use of the strictness and demand anno-
tation that happen to be already present in the code, e.g. on imported
identifiers. If, for example, the function f in the expression f (ńx. g x) hap-
pens to be annotated with the information that it calls its first argument at
most once with one argument, then we could improve the analysis result
and report that g is called at most once.

I am, however, reluctant to add this functionality: It would imply that
some programs might be optimised better by splitting them into more
modules, which is a harsh violation of the principle of least surprise.

Similarly, the other passes could use the information that was found
out by the Call Arity pass: Thunks that are determined by Call Arity to be
called at most once can be marked as one-shot, even if no eta-expansion
is possible, which would allow the code generator to omit the code that
implements the updating.

If we were willing to pay the price to include function parameters in the
set of interesting variables (Section 3.4.1), then although Call Arity cannot
make use of the thus found information to eta-expand anything, it could
create a preliminary demand signature for the function that might help
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the subsequent pass of the demand analyser to get more precise results,
or at least to converge earlier.

Finally, the information that a let-bound function or thunk is called
at most once from within a recursive function allows more aggressive
inlining.

For example, currently GHC does not transform

let a = f x0
b = g x0

in let go 0 = a
go 1 = b
go i = go (h i)

in go n

into

let go 0 = f x0
go 1 = g x0
go i = go (h i)

in go n

as in general, inlining into a recursive group can duplicate work [PM02].
In this case, it would be safe, as a and b are called at most once, and Call
Arity is able to determine that. In principle, extending GHC to do this is
not a problem; practically, the so-called float-out pass will simply undo
this change, because – again in general – floating things out of a recursive
group is a good idea, as it can increase sharing. In this case, no sharing
can be gained, as the expression f x0 is evaluated only once, but this fact
is not visible to GHC after a and b have been inlined.14

14https://ghc.haskell.org/trac/ghc/ticket/10918

https://ghc.haskell.org/trac/ghc/ticket/10918
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CHAPTER 4

The safety of Call Arity

THE previous chapter introduced a new analysis and transformation
for an optimising compiler, and analyses it in the usual detail: A

somewhat formal description of the transformation is accompanied by
empirical evidence of its usefulness based on benchmark results.

That none of the benchmarks exhibited reduced performance, at least
when measured by the number of allocations, suggests that the transfor-
mation is indeed a safe optimisation, i.e. does not make matters worse.
Nevertheless, I found this unsatisfying: The benchmark suite only con-
tains a small number of example programs – how can I be sure that my
transformation really never makes matters worse?

To that end, I want to actually prove that my transformation is safe, and
I want to do it in a machine-verified way, in order to attain the highest
level of assurance that the proof is correct.

Therefore, I set out to go all the way: I took the Call Arity analysis,
formalised it in the interactive theorem prover Isabelle and created a
machine-checked proof not only of functional correctness, but also that
the performance of the transformed program is not worse than that of the
original program. This chapter, parts of which I have presented at the
Haskell Symposium 2015 [Bre15b], describes this endeavour.

Recall that it is only safe to eta-expand a thunk if the thunk is called
at most once. So an arity analysis requires a cardinality analysis, which
determines how often a function or a thunk is called, in order to be able

http://xkcd.com/704
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to eta-expand a thunk. If the cardinality analysis were wrong and we
would eta-expand a thunk that is called multiple times, we would lose
the benefits of sharing and suddenly repeat work.

A correctness proof with regard to a standard denotational semantics
would not rule that out! A more detailed semantics is required instead. I
use the abstract machine introduced in Chapter 2, where the explicit heap
allows me to prove that the number of heap allocations does not increase
by transforming the program. This is a suitable criterion for safety in this
context, as explained shortly.

4.1 Proof outline

In my introduction of the Call Arity analysis in Chapter 3, I explain and
motivate the various details of the definition. These might be convincing
points that Call Arity might indeed be safe, but are far from a general,
rigorous proof. How can I go about producing such a proof?

First, I need to find a suitable semantics. The elegant standard denota-
tional semantics for functional programs, such as the one in Section 2.1.2,
are unfortunately too abstract and admit no observation of program per-
formance. Therefore, I use a standard small-step operational semantics
similar to Sestoft’s mark 1 abstract machine, introduced in Section 2.5.

With that semantics, I could have followed Sands [MS99] and measured
performance by counting evaluation steps. But that is too finegrained:
The eta-expansion transformation causes additional beta-reductions to
be performed during evaluation, and without subsequent simplification –
which does happen in a real compiler, but which I do not want to include
in the proof – these increase the number of steps in my semantics.

Therefore, I measure the performance by counting the number of al-
locations performed during the evaluation. This is sufficient to detect
accidental duplication of work, as shown by this gedankenexperiment:
Consider a program e1, which is transformed to e2, and a subexpression e
of e1 that also occurs in e2. By replacing e with let x1 = x1,. . . , xn = xn in e,
where the variables are fresh, we can force each evaluation of e to perform
at least n allocations, for an arbitrary large choice of n. So if e2 happens to
evaluate e more often than e1, we can choose n large enough to make e2
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allocate more than e1. Conversely, if our criterion holds, we can conclude
that the transformation does not duplicate work.

This measure is also realistic: When working on GHC, the number
of bytes allocated by a benchmark or a test case is the prime measure
that developers observe to detect improvements and regressions, as in
practice, it correlates very well with execution time and memory usage,
while being more stable across differing environments.

A transformation is safe in this sense if the transformed program per-
forms no more allocations than the original program.

The arity transformation eta-expands expressions, so in order to prove
it safe, I identify conditions when eta-expansion itself is safe, and ensure
that these conditions are always met.

A sufficient condition for the safety of an n-fold eta-expansion of an
expression e is that whenever e is evaluated, the top n elements on the
stack are arguments, and neither continuations of a case expression, as eta-
expansion would introduce a type error, nor update markers for thunks,
as eta-expansion would prevent the sharing. This is stated as Lemma 17.

The safety proof for the arity analysis (Lemma 18) keeps track of
some invariants during the evaluation which ensure that we can apply
Lemma 17 whenever an eta-expanded expression is about to be evaluated.

I perform the proof first for a naive arity analysis without a cardinality
analysis, i.e. one that needs to be conservative in this case. This cor-
responds to previous work on arity analysis, and furthermore, this is
sufficient to prove that the transformation is semantics preserving (Theo-
rem 4).

I then formally introduce the concept of a cardinality analysis in Sec-
tion 4.3. I do not simply prove safety of the co-call graph based analysis
directly, but split it up into a series of increasingly concrete proofs, each
building on the result of the previous, for two reasons:

• It is nice to separate various aspects of the proof (i.e. the interaction
of the arity analysis with the cardinality analysis; the gap between
the steps of the semantics and the structurally recursive nature of
the analysis; different treatments of recursive and non-recursive
bindings) into individual steps, but more importantly
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• while the co-call graph data structure is sufficiently expressive to
implement the analysis, it is an unsuitable abstraction for the safety
proof. There, we need to describe the possibly complex recursion
patterns of the heap as a whole with sufficient detail to identify and
make use that some expressions call each other in a nice and linear
fashion.

In the first refinement, the cardinality analysis is completely abstract: Its
input is the whole configuration and its result is simply which variables
on the heap are going to be called more than once. We give conditions
(Definition 11) when an arity analysis using such a cardinality analysis is
safe (Lemma 23).

The next refinement assumes a cardinality analysis that now looks
just at expressions, not whole configurations, and returns a much richer
analysis result: A trace tree which is a (possibly) infinite tree where each
path corresponds to one possible execution and the edges are labelled by
the variables called during that evaluation.

Given such a trace tree analysis, an abstract analysis as described in the
first refinement can be implemented: The trees describing the expressions
in a configuration (on the heap, as the control or in the stack) can be
combined to a tree describing the behaviour of the whole configuration.
This calculation, named s in Section 4.3.2, is quite natural for trace trees,
but would be hard to define on co-call graphs only. From that tree I can
determine the cardinalities of the individual variables. I specify conditions
on the trace tree analysis (Definition 14) and in Lemma 26 show them to
be sufficient to fulfil the specification of the first refinement.

The third and final refinement assumes an analysis that returns a co-
call graph for each expression. Co-call graphs can be seen as compact
approximations of trace trees, with edges between variables that can
occur on the same path in the tree. The specification in Definition 15 is
shown in Lemma 27 to be sufficient to fulfil the specification of the second
refinement.

Eventually, I give the definition of the real Call Arity analysis in Sec-
tion 4.3.4, and as it fulfils the specification of the final refinement, the
desired safety theorem (Theorem 5) follows.
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4.2 Arity analyses

In general, an arity analysis is a function that, given a binding (Γ, e),
consisting of variable names bound to right-hand-sides in Γ and the body
e, determines the arity of each of the bound expressions. It depends on
the number α of arguments passed to e and may return ⊥ for a name that
is not called at all:

Aα(Γ, e) : Var→N⊥.

Given such an analysis, we can run it over a program and transform
it accordingly. The transformation function traverses the syntax tree,
keeping track of the number of arguments passed along the way:

Tα(x) = x

Tα(e x) = Tα+1(e) x

Tα(ńx. e) = (ńx.Tα−1(e))

Tα(Cb) = Cb for b ∈ {t, f}
Tα(e ? et : ef ) = T0(e) ?Tα(et) :Tα(ef )

Tα(let Γ in e) = let TAα(Γ,e)(Γ) in Tα(e)

The actual transformation happens at a binding, where it eta-expands
bound expressions according to the result of the arity analysis, using the
n-fold eta expansion operator introduced in Section 1.5. If the analysis
determines that a binding is never called, it simply leaves it alone:

Tᾱ(Γ) =
[

x 7→
{

e if ᾱ(x) = ⊥
Eα(Tα(e)) if ᾱ(x) = α

}∣∣∣(x 7→ e) ∈ Γ
]
.

As motivated earlier, I consider an arity analysis A to be safe if the
transformed program does not perform more allocations than the original
program. A – technical – benefit of this measure is that the number of
allocations always equals the size of the heap plus the number of update
markers on the stack, as no garbage collector is modelled in the semantics:

Definition 5 (Safe transformation)
A program transformation T is safe if for every execution

([], e, [])⇒∗ (Γ, v, [])
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with isVal v, there is an execution

([],T(e), [])⇒∗ (Γ′, v′, [])

with isVal(v′) and |dom Γ′| ≤ |dom Γ|.
An arity analysis A is safe if the transformation T is safe. �

This formulation of safety works nicely as the semantics is deterministic
up to the choice of variable names. For a genuinely non-deterministic
semantics, a definition of safety would have to distinguish different exe-
cutions and ensure that for each of them, a corresponding execution of
the transformed expression exists and does not allocate more.

Note that this definition does not entail functional, i.e. semantic, cor-
rectness, which is discussed and proved in Section 4.2.2.

Specification

I begin by stating sufficient conditions for an arity analysis to be safe.
In order to phrase the conditions, I also need to know the arities an
expression e calls its free variables with, assuming it is itself called with α
arguments:

Aα(e) : Var→N⊥

For notational simplicity, I define A⊥(e) := ⊥.
The specification consists of a few naming hygiene conditions and an

inequality for most syntactical constructs:

Definition 6 (Arity analysis specification)

domAα(e) ⊆ fv e (A-dom)

domAα(Γ, e) ⊆ dom Γ (Ah-dom)

z /∈ {x, y} =⇒ Aα(e[x := y]) z = Aα(e) z (A-subst)

x, y /∈ dom Γ =⇒
Aα(Γ[x := y], e[x := y]) = Aα(Γ, e) (Ah-subst)

[x 7→ α] v Aα(x) (A-Var)

Aα+1(e) t [x 7→ 0] v Aα(e x) (A-App)

Aα−1(e) \ {x} v Aα(ńx. e) (A-Lam)
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A0(e) tAα(et) tAα(ef ) v Aα(e ? et : ef ) (A-If)

AAα(Γ,e)(Γ) tAα(e) v Aα(Γ, e) tAα(let Γ in e) (A-Let)

where
Aα(Γ) :=

⊔ {
A(α x)(e)

∣∣(x 7→ e) ∈ Γ
}

. �

These conditions come quite naturally: An expression should not report
calls to names that it does not know about. Replacing one variable by
another should not affect the arity of other variables. A variable, evaluated
with a certain arity, should report (at most) that arity.

In the rules for application and lambda abstraction we keep track of the
number of arguments. As this models a forward analysis which looks at
bodies before right-hand-sides, we get no useful information on how the
argument x in an application e x is called by e.

In rule (A-If), the scrutinee is evaluated without arguments, hence it is
analysed with arity 0.

The rule (A-Let) is a concise way to capture a few requirements. Note
that, by (A-dom) and (Ah-dom), the domains ofAα(Γ, e) andAα(let Γ in e)
are disjoint, i.e.Aα(Γ, e) contains the information on how the names of the
current binding are called, while Aα(let Γ in e) informs us about the free
variables. The left-hand side contains all possible calls, both from the body
of the binding and from each bound expression. These are analysed with
the arity reported byAα(Γ, e). The occurrence ofAα(Γ, e) on both sides of
the inequality anticipates the fixed-point iteration in the implementation
of the analysis.

Definition 6 suffices to prove functional correctness (Section 4.2.2 con-
tains a proof of that) but not safety, as the issue of thunks is not touched
upon yet. The simplest way to handle thunks – and the only way without
the aid of a cardinality analysis – is to simply give up when encountering
a thunk:

Definition 7 (No-cardinality analysis specification)

x ∈ thunks Γ =⇒ Aα(Γ, e) x = 0 (Ah-thunk)
�
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Safety

The safety of an eta-expanding transformation rests on the simple ob-
servation that, given enough arguments on the stack, an eta-expanded
expression evaluates straight to the original expression:

Lemma 17 (Safety of eta-expansion)

(Γ, Eα(e), $x1 · · · $xα·S)⇒∗ (Γ, e, $x1 · · · $xα·S)

Proof
(Γ, Eα(e), $x1 · · · $xα·S)

= (Γ, (ńz1 . . . zα. e z1 . . . zα), $x1 · · · $xα·S)
⇒∗(Γ, e x1 . . . xα, S) { by APP2 }

⇒∗(Γ, e, $x1 · · · $xα·S) { by APP1 } �

So the safety proof for the whole transformation now just has to make
sure that whenever we evaluate an eta-expanded value, there are enough
arguments on top of the stack. Let args S denote the number of arguments
on top of the stack.

While tracking the evaluation of the original program in the proof, we
need to construct the corresponding configurations in the evaluation of
the transformed program. Therefore, we need to keep track of the arity
argument to each of the expressions that occurs in a configuration: those
on the heap, the control and those in alternatives on the stack. Together,
these arguments form an arity annotation written (ᾱ, α, α̇). Given such an
annotation, we can transform a configuration:

T(ᾱ,α,α̇)((Γ, e, S)) = (Tᾱ(Γ),Tα(e), Ṫα̇(S))

where the stack is transformed by

Ṫα·α̇((et : ef )·S) = (Tα(et) :Tα(ef ))·Ṫα̇(S)

Ṫα̇($x·S) = $x·Ṫα̇(S)

Ṫα̇(#x·S) = #x·Ṫα̇(S)

Ṫα̇([]) = [].
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While carrying the arity annotation through the evaluation of our pro-
grams, we need to ensure that it stays consistent with the current configu-
ration.

Definition 8 (Arity annotation consistency)
An arity annotation is consistent with a configuration, written (ᾱ, α, α̇) .
(Γ, e, S), if
• dom ᾱ ⊆ dom Γ ∪ #S,
• args S v α,
•
(
Aα(Γ) tAα(e) t Ȧα̇(S)

)∣∣
dom Γ∪#S v α, where

Ȧ[]([]) := ⊥
Ȧα·α̇((et : ef )·S) := Aα(et) tAα(ef ) t Ȧα̇(S)

Ȧα̇($x·S) := [x 7→ 0] t Ȧα̇(S)

Ȧα̇(#x·S) := [x 7→ 0] t Ȧα̇(S), and

• α̇ . S, defined as

[] . []

α·α̇ . (et : ef )·S ⇐⇒ α̇ . S ∧ args S v α

α̇ . $x·S ⇐⇒ α̇ . S

α̇ . #x·S ⇐⇒ α̇ . S. �

As this definition does not consider the issue of thunks, I extend it by
one additional requirement:

Definition 9 (No-cardinality arity annotation consistency)
An arity annotation is no-cardinality consistent with a configuration, written
(ᾱ, α, α̇) .N (Γ, e, S), iff (ᾱ, α, α̇) . (Γ, e, S) and ᾱ x = 0 for all x ∈ thunks Γ.�

I do not include this requirement in the definition of . as I will extend it
differently when I add a cardinality analysis in Definition 13.

Clearly (⊥, 0, []) is a consistent annotation for an initial configuration
([], e, []). The rules take consistently annotated configurations to consis-
tently annotated configurations during the evaluation – with one excep-
tion which causes a minor technical overhead: Upon evaluation of a
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variable x, its binding x 7→ e is always taken off the heap first, even when
it is already evaluated, i.e. isVal e:

(Γ[x 7→ e], x, S)⇒ (Γ, e, #x·S)⇒ (Γ[x 7→ e], e, S)

I would not be able to prove consistency in the intermediate state. To
work around this issue, assume that rule VAR1 has an additional constraint
¬isVal e and that the rule

(x 7→ e) ∈ Γ, isVal e =⇒ (Γ, x, S)⇒ (Γ, e, S) (VAR′1)

is added. This modification makes the semantics skip over one step,
which is fine (and closer to what happens in reality).

Lemma 18
Assume A fulfils Definitions 6 and 7.

If we have (Γ, e, S) ⇒∗ (Γ′, e′, S′) and (ᾱ, α, α̇) .N (Γ, e, S), then there
exists an arity annotation (ᾱ′, α′, α̇′) with (ᾱ′, α′, α̇′) .N (Γ′, e′, S′), and
T(ᾱ,α,α̇)((Γ, e, S))⇒∗T(ᾱ′ ,α′ ,α̇′)((Γ′, e′, S′)).

Proof
by the individual steps of⇒∗. For APP1 we have

Aα+1(e) t Ȧα̇($x·S) = Aα+1(e) t [x 7→ 0] t Ȧα̇(S)

v Aα(e x) t Ȧα̇(S)

using (A-App) and the definition of Ȧ. So with (ᾱ, α, α̇) .N (Γ, e x, S) we
have (ᾱ, α + 1, α̇) .N (Γ, e, $x·S). Furthermore

T(ᾱ,α,α̇)((Γ, e x, S)) = (Tᾱ(Γ), (Tα+1(e)) x, Ṫα̇(S))

⇒ (Tᾱ(Γ),Tα+1(e), $x·Ṫα̇(S))

= T(ᾱ,α+1,α̇)((Γ, e, $x·S))

by rule APP1.
The other cases follow this pattern, where the inequalities in Definition 6

ensure the preservation of consistency.
In case VAR1 the variable x is bound to a thunk. From consistency we

obtain ᾱ x = 0, so we can use E0(T0(e)) = T0(e). Similarly, α = ᾱ x = 0
holds in case VAR2.
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The actual eta-expansion is handled in case VAR′1: We have

args(Ṫα̇(S)) = args S v α v Aα(x) x v ᾱ x,

from consistency and (A-Var) and hence

T(ᾱ,α,α̇)((Γ, x, S))⇒ (Tᾱ(Γ), Eᾱ x(Tᾱ x(e)), Ṫα̇(S)) { VAR′1 }

⇒∗(Tᾱ(Γ),Tᾱ x(e), Ṫα̇(S)) { by Lemma 17 }

= T(ᾱ,ᾱ x,α̇)((Γ, e, S)).

Case: LET1
The new variables in ∆ are fresh with regard to Γ and S, hence also with
regard to ᾱ according to the naming hygiene conditions in (ᾱ, α, α̇) .N

(Γ, let ∆ in e, S). So in order to have (Aα(∆, e) t ᾱ, α, α̇) . (∆ · Γ, e, S), it
suffices to show

(AAα(∆,e)(∆) tAα(e))
∣∣
dom∆∪dom Γ∪#S v Aα(∆, e) t ᾱ,

which follows from (A-Let) and Aα(let ∆ in e)
∣∣
dom Γ∪#S v ᾱ. The require-

ment Aα(∆, e) x = 0 for x ∈ thunks∆ holds by (Ah-thunk). �

The main take-away of this lemma is the following corollary, which
states that the transformed program performs the same number of alloca-
tions as the original program.

Corollary 19
The arity analysis is safe (in the sense of Definition 5): If ([], e, []) ⇒∗
(Γ, v, []), then there exists Γ′ and v′ such that ([],T0(e), []) ⇒∗ (Γ′, v′, [])
where Γ and Γ′ contain the same number of bindings.

Proof
We have (⊥, 0, []) .N ([], e, []). Lemma 18 gives us ᾱ, α and α̇ so that
T(⊥,0,[])(([], e, [])) ⇒∗T(ᾱ,α,α̇)((Γ, v, [])) and Tᾱ(Γ) binds the same names
as Γ. �

4.2.1 A concrete arity analysis

So far, we have a specification for an arity analysis and a proof that every
analysis that fulfils the specification is safe.
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One possible implementation is the trivial arity analysis which does
not do anything useful and simply returns the most pessimistic result:
Aα(e) := [x 7→ 0 | x ∈ fv e] and Aα(Γ, e) := [x 7→ 0 | x ∈ dom Γ].

A more realistic arity analysis is defined by

Aα(x) := [x 7→ α]

Aα(e x) := Aα+1(e) t [x 7→ 0]

Aα(ńx. e) := Aα−1(e) \ {x}
Aα(e ? et : ef ) := A0(e) tAα(et) tAα(ef )

Aα(Cb) := ⊥ for b ∈ {t, f}
Aα(let Γ in e) := (µᾱ. Aᾱ(Γ) tAα(e) t [x 7→ 0 | x ∈ thunks Γ]) \ dom Γ

and

Aα(Γ, e) := (µᾱ. Aᾱ(Γ) t Aα(e) t [x 7→ 0 | x ∈ thunks Γ])
∣∣
dom Γ

where (µᾱ. . . .) denotes the least fixed point, which exists as the involved
operations are continuous and monotone in ᾱ. Moreover, the fixed point
can be found in a finite number of steps by iterating from ⊥, as the carrier
of ᾱ is bounded by the finite set fv Γ ∪ fv e, and the pointwise partial order
on arities has no infinite ascending chains. As this ignores the issue of
thunks, it corresponds to the analysis described in [Gil96].

This implementation fulfils the specifications in Definition 6 and Defi-
nition 7, so by Corollary 19, it is safe.

4.2.2 Functional correctness

This section on the functional correctness of the transformation is a slight
detour in this chapter, which is mainly about the safety of the transfor-
mation. I include it here not only because functional correctness, i.e. the
preservation of semantics, is an important property, but also to demon-
strate that it holds independent of the correctness of a cardinality analysis.

For this section, we expect the analysis to fulfil the specification in
Definition 6, but do not require any specific behaviour with regard to
thunks, i.e. Definition 7 does not need to hold.
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Theorem 4 (Functional correctness of Call Arity)
For all expressions e, we have

JT0(e)K = JeK.

As usual, in order to prove this, I need to generalise the statement.
In this case, the statement needs to hold for arbitrary incoming arities,
instead of just 0, and furthermore for arbitrary environments instead of
just ⊥.

But in the general case, I would not be able to prove plain equality:
Consider the expression e = let x = x in x: When analysed with an
incoming arity of 1, we have

T1(e) = let x = ńy. x y in x

but
JeK⊥ = ⊥ 6= Fn(λ_.⊥) = JT1(e)K⊥.

Therefore, I need to generalise the notion of equality as well, to a weaker
notion that only demands equality when applied to enough arguments:

Definition 10 (Equality up to eta-expansion)
For every α ∈N and v1, v2 ∈ Value let e1 ≈α e2 denote that

v1 ↓Fn z1 ↓Fn . . . ↓Fn zα = v2 ↓Fn z1 ↓Fn . . . ↓Fn zα.

for all z1, . . . , zα ∈ Value
Furthermore, for every arity environment ᾱ ∈ Var→N⊥ and environ-

ments ρ1, ρ2 ∈ Var→ Value, let

ρ1 ≈ᾱ ρ2 := ∀x ∈ dom ᾱ. (ρ1 x) ≈ᾱ x (ρ2 x). �

Note that ≈0 coincides with plain equality. If we have v1 ≈α+1 v2, then
also v1 ↓Fn z ≈α v2 ↓Fn z for all z ∈ Value. Conversely, v1[v] ≈α−1 v2[v]
for all v ∈ Value implies Fn(λv. v1[v]) ≈α Fn(λv. v2[v]).

The relation is monotone in the sense that for α v α′, ≈α′ implies ≈α,
and analogously for the relation on environments.

The main motivation for this definition is that it does not see eta-
expansion:
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Lemma 20
JEα(e)Kρ ≈α JeKρ

Proof
by induction of α. �

I proceed by proving soundness of the analysis and then the correctness
of the transformation, in its general form.

Lemma 21
If ρ1 ≈Aα(e) ρ2, then JeKρ1 ≈α JeKρ2 .

Proof
by induction over the expression e.

Case: e = x
By (A-Var), we have α v Aα(e), so the assumption of the lemma implies
(ρ1 x) ≈Aα(e) x (ρ2 x), which in turn provides (ρ1 x) ≈α (ρ2 x) as required.

Case: e = e′ x
By (A-App), the assumption of the lemma implies both ρ1 ≈Aα+1(e′) ρ2 as
well as (ρ1 x) ≈0 (ρ2, x). By induction, the former yields Je′Kρ1 ≈α+1 Je′Kρ2 .
Therefore

Je′ xKρ1 = Je′Kρ1 ↓Fn ρ1 x

= Je′Kρ1 ↓Fn ρ2 x

≈α Je′Kρ2 ↓Fn ρ2 x

= Je′ xKρ2 .

Case: e = ńx. e′

By (A-Lam) and the assumption we have ρ1 ≈Aα−1(e′)\{x} ρ2, which,
for any v ∈ Value, yields (ρ1 t [x 7→ v]) ≈Aα−1(e′) (ρ2 t [x 7→ v]). By the
induction hypothesis, this implies Je′Kρ2t[x 7→v] ≈α−1 Je′Kρ2t[x 7→v], and thus

Jńx. e′Kρ1 = Fn(λv. Je′Kρ1t[x 7→v])

≈α Fn(λv. Je′Kρ2t[x 7→v])

= Jńx. e′Kρ2 .
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Case: e = let Γ in e′

This follows immediately from the denotation of let-expressions and
the inductive hypothesis, once we have ({{Γ}}ρ1) ≈Aα(e) ({{Γ}}ρ2). By
(A-Let), this can be generalised to ({{Γ}}ρ1) ≈ᾱ ({{Γ}}ρ2) where ᾱ =
Aα(Γ, e) tAα(let Γ in e).

We prove this by parallel fixed-point induction. The base case is trivial,
so we assume we have

ρ′1 ≈ᾱ ρ′2

for some ρ′1, ρ′2, and we need to show

(ρ1 ++dom ΓJΓKρ′1
) ≈ᾱ (ρ2 ++dom ΓJΓKρ′2

)

which we do point-wise. Let α′ = ᾱ x.
For x 7→ e′′ ∈ Γ, we need to show (Je′′Kρ′1

) ≈α′ (Je′′Kρ′1
). By the induc-

tion hypothesis, this requires ρ′1 ≈Aα′ (e
′′) ρ′2, which in turn follows from

ρ′1 ≈ᾱ ρ′2 and (A-Let).
For x /∈ dom Γ, we need to show (ρ1 x) ≈α′ (ρ2 x). This follows

from ᾱ x = Aα(let Γ in e) x and the assumption of the lemma, namely
ρ1 ≈Aα(let Γ in e) ρ2.
Case: e = Cb
Trivial.
Case: e = e′ ? et : ef
By the assumption, (A-If) and the monotonicity of ≈ᾱ, we can invoke all
three induction hypotheses and obtain Je′Kρ1 ≈0 Je′Kρ2 , JetKρ1 ≈α JetKρ2

and JefKρ1 ≈α JefKρ2 . From this, Je′ ? et : efKρ1 ≈α Je′ ? et : efKρ2 follows by
a case analysis on Je′Kρ1 . �

With this in place, we can prove that the transformation is semantics-
preserving:

Lemma 22
JTα(e)Kρ ≈α JeKρ.

Proof
Again, by induction on e, for arbitrary α and ρ.
Case: e = x
trivial.
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Case: e = e′ x
By the induction hypothesis, we have JTα+1(e′)Kρ ≈α+1 Je′Kρ, so

JTα(e′ x)Kρ = JTα+1(e′) xKρ

= JTα+1(e′)Kρ ↓Fn ρ x

≈α Je′Kρ ↓Fn ρ x

= Je′ xKρ.

Case: e = ńx. e′

By the induction hypothesis, we have JTα−1(e′)K′ρ ≈α−1 Je′K′ρ for any ρ′,
so

JTα(ńx. e′)Kρ = Jńx.Tα−1(e′)Kρ

= Fn(λv. JTα+1(e′)Kρt[x 7→v])

≈α Fn(λv. Je′Kρt[x 7→v])

= Jńx. e′Kρ.

Case: e = let Γ in e′

We first need to prove

{{TAα(Γ,e)(Γ)}}ρ ≈Aα(e) {{Γ}}ρ. (∗)

which, using (A-let), follows from

{{TAα(Γ,e)(Γ)}}ρ ≈ᾱ {{Γ}}ρ.

with ᾱ = Aα(Γ, e) tAα(let Γ in e).
Similar to above, we can prove this using parallel fixedpoint induction.

Again, the base case is trivial, so let ρ1, ρ2 be environments for which

ρ1 ≈ᾱ ρ2

holds. We need to show

JTAα(Γ,e)(Γ)Kρ1 ≈ᾱ JΓKρ2 .
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which we verify point-wise. Let x 7→ e′′ ∈ Γ and α′ = Aα(Γ, e) x = ᾱ x.
We have

JTAα(Γ,e)(Γ)Kρ1 x = JEα′(Tα′(e
′′))Kρ1

≈α′ JTα′(e
′′)Kρ1 { Lemma 20 }

≈α′ Je′′Kρ1 { ind. hypothesis }

≈α′ Je′′Kρ2 { Lemma 21 }

= JΓKρ2 x

where in order to invoke Lemma 21, we need ρ1 ≈Aα′ (e
′′) ρ2, which

follows from ρ1 ≈ᾱ ρ2 and (A-Let).
Now we can calculate

JTα(let Γ in e′)Kρ = Jlet TAα(Γ,e′)(Γ) in Tα(e′)Kρ

= JTα(e′)K{{TAα(Γ,e′)(Γ)}}ρ

≈α Je′K{{TAα(Γ,e′)(Γ)}}ρ
{ ind. hypothesis }

≈α Je′K{{Γ}}ρ { Lemma 21 and (∗) }

= Jlet Γ in e′Kρ.

Case: e = Cb
Trivial.
Case: e = e′ ? et : ef
By induction we have JT0(e)Kρ ≈0 JeKρ, so JT0(e)Kρ = JeKρ, and by case
analysis on this value, this follows from the induction hypotheses. �

Proof (of Theorem 4)
This follows from Lemma 22 with ρ = ⊥, as ≈0 coincides with regular
equality. �

4.3 Cardinality analyses

The previous section proved the safety of a straight-forward arity analysis.
But it was severely limited by not being able to eta-expand thunks, which
is desirable in practice.
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4.3.1 Abstract cardinality analysis

So the arity analysis needs an accompanying cardinality analysis which
prognoses how often a bound variable is going to be evaluated: I model
this as a function

Cα(Γ, e) : Var→ Card

where Card is the three element lattice

⊥ @ 1 @ ∞,

corresponding to “not called”, “called at most once” and “no information”,
respectively. We use γ for an element of Card and γ̄ for a mapping Var→
Card.

The expression γ̄− x, which subtracts one call from the prognosis, is
defined as

(γ̄− x) y =

{
⊥ if y = x and γ̄ y = 1
γ̄ y otherwise.

Specification

I start with a very abstract specification for a safe cardinality analysis and
prove that an arity transformation that makes use of it it is still safe. I stay
oblivious in how the analysis works and defer that to the next refinement
step in Section 4.3.2.

For the specification we not only need the local view on one binding,
as provided by Cα(Γ, e), but also a prognosis on how often each variable
is going to be called in the further execution of a complete and arity-
annotated configuration:

C(ᾱ,α,α̇)((Γ, e, S)) : Var→ Card

Definition 11 (Cardinality analysis specification)
The cardinality prognosis and cardinality analysis fulfil some obvious
naming hygiene conditions:

dom Cα(∆, e) = domAα(∆, e) (Ch-dom)

dom C(ᾱ,α,α̇)((Γ, e, S)) ⊆ fv (Γ, e, S) (C-dom)
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ᾱ
∣∣
dom Γ = ᾱ′

∣∣
dom Γ =⇒
C(ᾱ,α,α̇)((Γ, e, S)) = C(ᾱ′ ,α,α̇)((Γ, e, S)) (C-cong)

ᾱ x = ⊥ =⇒ C(ᾱ,α,α̇)((Γ, e, S)) = C(ᾱ,α,α̇)((Γ \ {x}, e, S)) (C-not-called)

Furthermore, the cardinality analysis is likewise a forward analysis and
has to be conservative about function arguments:

$x ∈ S =⇒ [x 7→ ∞] v C(ᾱ,α,α̇)((Γ, e, S)) (C-args)

The prognosis may ignore update markers on the stack:

C(ᾱ,α,α̇)((Γ, e, #x·S)) v C(ᾱ,α,α̇)((Γ, e, S)) (C-upd)

An imminent call better be prognosed:

[x 7→ 1] v C(ᾱ,α,α̇)((Γ, x, S)) (C-call)

Evaluation improves the prognosis: Note that in (C-Var1) and (C-Var′1),
we account for the call to x with the − operator.

C(ᾱ,α+1,α̇)((Γ, e, $x·S)) v C(ᾱ,α,α̇)((Γ, e x, S)) (C-App)

C(ᾱ,α−1,α̇)((Γ, e[y := x], S)) v C(ᾱ,α,α̇)((Γ, ńy. e, $x·S)) (C-Lam)

(x 7→ e) ∈ Γ, ¬isVal e =⇒
C(ᾱ,ᾱ x,α̇)((Γ \ {x}, e, #x·S)) v C(ᾱ,α,α̇)((Γ, x, S))− x (C-Var1)

(x 7→ e) ∈ Γ, isVal e =⇒
C(ᾱ,ᾱ x,α̇)((Γ, e, S)) v C(ᾱ,α,α̇)((Γ, x, S))− x (C-Var′1)

isVal e =⇒
C(ᾱ,0,α̇)((Γ[x 7→ e], e, S)) v C(ᾱ,0,α̇)((Γ, e, #x·S)) (C-Var2)

C(ᾱ,0,α·α̇)((Γ, e, (et : ef )·S)) v C(ᾱ,α,α̇)((Γ, e ? et : ef , S)) (C-If1)

b ∈ {t, f} =⇒ C(ᾱ,α,α̇)((Γ, eb, S)) v C(ᾱ,0,α·α̇)((Γ,Cb, (et : ef )·S)) (C-If2)

The specification for the let-bindings connects the arity analysis, the
cardinality analysis and the cardinality prognosis:

dom∆ ∩ fv (Γ, S) = {}, dom ᾱ ⊆ dom Γ ∪ #S =⇒
C(Aα(∆,e)tᾱ,α,α̇)((∆ · Γ, e, S)) v Cα(∆, e) t C(ᾱ,α,α̇)((Γ, let ∆ in e, S))

(C-Let)
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Finally, we need to ensure that the analysis returns the top element of
the lattice for thunks that might be called more than once. In contrast to
the corresponding Definition 7, this can now make use of the cardinality
analysis:

x ∈ thunks Γ, Cα(Γ, e) x = ∞ =⇒ Aα(Γ, e) x = 0 (Ah-∞-thunk)
�

Safety

The safety proof proceeds similarly to the one for Lemma 18. But now we
are allowed to eta-expand thunks that are called at most once. This has
considerable technical implications for the proof:

• An eta-expanded expression is a value, so in the transformed pro-
gram, VAR2 occurs immediately after VAR1. In the original program,
however, an update marker stays on the stack until the expression is
evaluated to a value, and then VAR2 fires without a correspondence
in the evaluation of the transformed program. In particular, the
update marker can interfere with uses of Lemma 17.

• Because the eta-expanded expression is a value, it stays on the
heap as it is, whereas in the original program, it is first evaluated.
Evaluation can reduce the number of free variables of the expression,
so subsequent choices of fresh variables in LET1 in the original
evaluation might not be suitable in the evaluation of the transformed
program.

A more complicated variant of Lemma 17 and carrying a variable re-
naming around throughout the proof might solve these problems, but
would complicate it too much. I therefore apply a small trick and simply
allow unwanted update markers to disappear, by defining a variant of
the semantics:
Definition 12 (Forgetful semantics)
The relation⇒# is defined by

(Γ, e, S)⇒ (Γ′, e′, S′) =⇒ (Γ, e, S)⇒# (Γ′, e′, S′)
and

(Γ, e, #x·S)⇒# (Γ, e, S). DROPUPD

�
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This way, a one-shot binding can disappear completely after it has been
called, making it easier to relate the original program to the transformed
program. Because⇒# contains⇒, Lemma 17 holds here as well. After-
wards, and outside the scope of the safety proof, I will recover the original
semantics from the forgetful semantics.

In the proof I keep track of the set of removed bindings (named r), and
write (Γ, e, S)− r := (Γ \ r, e, S− r) for the configuration with bindings
from the set r removed. The stack (S− r) is S without update markers #x
where x ∈ r.

I also keep track of γ̄ : Var → Card, the current cardinalities of the
variables on the heap:

Definition 13 (Cardinality arity annotation consistency)
I write (ᾱ, α, α̇, γ̄, r) .C (Γ, e, S), iff
• the arity information is consistent, (ᾱ, α, α̇) . (Γ, e, S)− r,
• dom ᾱ = dom γ̄,
• the cardinality information is correct, C(ᾱ,α,α̇)((Γ, e, S)) v γ̄,
• many-called thunks are not going to be eta-expanded, i.e. ᾱ x = 0

for x ∈ thunks Γ with γ̄ x = ∞ and
• only bindings that are not going to be called (γ̄ x = ⊥) are removed,

i.e. r ⊆ (dom Γ ∪ #S)− dom γ̄. �

Lemma 23
Assume A and C fulfil the specifications in Definitions 6 and 11.

If (Γ, e, S) ⇒∗ (Γ′, e′, S′) and (ᾱ, α, α̇, γ̄, r) .C (Γ, e, S) , then there exists
an arity annotation (ᾱ′, α′, α̇′, γ̄′, r′) such that (ᾱ′, α′, α̇′, γ̄′, r′) .C (Γ′, e′, S′),
and T(ᾱ,α,α̇)((Γ, e, S)− r)⇒∗# T(ᾱ′ ,α′ ,α̇′)((Γ′, e′, S′)− r′).

The lemma is an analogue to Lemma 18. The main difference, besides
the extra data to keep track of, is that we produce an evaluation in the
forgetful semantics, with some bindings removed.

Proof
by the individual steps of⇒∗. The preservation of the arity annotation
consistency in the proof of Lemma 18 can be used here as well. Note that
both the arity annotation requirement and the transformation are applied
to (Γ, e, S)− r, so this goes well together. The correctness of the cardinality
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information (the second condition in Definition 13) follows easily from
the inequalities in Definition 11.

I elaborate only on the interesting cases:

Case: VAR1
We cannot have γ̄ x = ⊥ because of (C-call).

If γ̄ x = ∞ we get ᾱ x = 0, as before, and nothing surprising happens.
If γ̄ x = 1, we know that this is the only call to x, so we set r′ = r ∪ {x},

γ̄′ = γ̄− x and use DROPUPD to get rid of the mention of #x on the stack.

Case: VAR2
If x /∈ r, proceed as before. If x ∈ r, then the transformed configurations
are identical and the⇒∗# judgement follows from reflexivity. �

Corollary 24
The cardinality based arity analysis is safe for closed expressions, i.e. if
fv e = {} and ([], e, []) ⇒∗ (Γ, v, []) then there exists Γ′ and v′ such that
([],T0(e), []) ⇒∗ (Γ′, v′, []) where Γ and Γ′ contain the same number of
bindings.

Proof
We need fv e = {} to have C⊥,0,[](([], e, [])) = ⊥, so that (⊥, 0, [],⊥, []) .C

([], e, []) holds. Now according to Lemma 23 there are ᾱ, α, α̇ and r so that
T(⊥,0,[])(([], e, []))⇒∗# T(ᾱ,α,α̇)((Γ, v, [])− r).

As the forgetful semantics only drops unused bindings, but does not
otherwise behave any different than the real semantics, a technical lemma
allows us to recover T(⊥,0,[])(([], e, []))⇒∗T(ᾱ,α,α̇)((Γ′, v, [])) for a Γ′ where
Tᾱ(Γ)− r = Γ′ − r′. As r ⊆ Γ and r′ ⊆ Γ′, this concludes the proof of the
corollary: Γ, Tᾱ(Γ) and Γ′ all bind the same variables. �

4.3.2 Trace tree cardinality analysis

In the second refinement, I look – still quite abstractly – at the implemen-
tation of the cardinality analysis. For the arity information, the type of the
result required for the transformation (Var→ N⊥) was sufficiently rich
to be used in the analysis as well. This is unfortunately not the case for
the cardinality analysis: Even if we know that an expression calls x and
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y each at most once, this does not tell us whether these calls can occur
together (as in e x y) or whether they are exclusive (as in e ? x : y).

So I need a richer type that captures the future calls of an expression,
that can distinguish different code paths and that maps easily to the type
Var → Card: This is the type TTree of (possibly infinite) trees, where
each edge is labelled with a variable name, and a node has at most one
outgoing edge for each variable name. The paths in the tree correspond to
the possible executions and the labels on the edges record each occurring
variable call. I use t for values of type TTree.

There are other, equivalent ways to interpret this type: Each TTree
corresponds to a non-empty set of (finite) lists of variable names that is
prefixed-closed (i.e. for every list in the set, its prefixes are also in the set).
Each such list corresponds to a (finite) path in the tree. The function

paths : TTree→ 2[Var]

implements this correspondence.
Yet another view is given by the function

next : Var→ TTree→ TTree⊥,

where nextx t = t′ iff the root of t has an edge labelled x leading to t′, and
nextx t = ⊥ if the root of t has no edge labelled x. In that sense, TTree
represents automata with labelled transitions, and we can actually define
a trace trees t by specifying nextx t for all x ∈ Var.

The basic operations on trees are ⊕, given by paths(t⊕ t′) = paths t ∪
paths(t′), and ⊗, where paths(t⊗ t′) is the set of all interleavings of lists
from paths t with lists from paths(t′). I write t∗ for t⊗ t⊗ t⊗ · · · . A tree
is called repeatable if t = t⊗ t = t∗.

The partial order used on TTree is

t v t′ ⇐⇒ paths t ⊆ paths t′.

I write for the tree with no edges and simply x for x , the tree with
exactly one edge labelled x. The tree t \V is t with all edges with labels in
V contracted, t

∣∣
V is t with all edges but those labelled with variables in V

contracted.
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Example
Consider the two trees

t1 =
x

y
and t2 = zx .

Then we have:

t1 ⊕ t2 =
zx

y
t1 ⊗ t2 =

x

yz

zy

z
x

x

zx
y

t∗1 =

x
yx

x
y

y

(t1 ⊗ t2) \ {x} = (t1 ⊗ t2)
∣∣
{y,z} =

yz

zy
�

Given a binding (Γ, e) where we have a TTree describing the calls done
by e, and also one TTree for each expression bound in Γ, how can we
combine that information into one tree describing the behaviour of the
whole binding?

A first attempt might be a function

s : (Var→ TTree)→ TTree→ TTree

defined by

nextx(s t̄ t) :=

{
⊥ if nextx t = ⊥
s t̄ (t′ ⊗ t̄ x) if nextx t = t′,

that traverses the tree t and upon every call interleaves the tree of the
called name, t̄ x, with the remainder of t.

Example
Let t̄ x =

y
, t̄ y = z , t̄ x = and t =

yx . Then

s t̄ t =
zyz

zzy
yx .

�
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This is a good start, but it does not cater for thunks, where the first call
behaves differently than later calls. Therefore, we have to tell s which
variables are bound to thunks, and give them special treatment: After a
variable x referring to a thunk is evaluated, we pass on a modified map
where t̄ x = .

Hence I extend the signature to

s : 2Var → (Var→ TTree)→ TTree→ TTree

and the definition is now

nextx(sT t̄ t) :=


⊥ if nextx t = ⊥
sT t̄ (t′ ⊗ t̄ x) if nextx t = t′, x /∈ T
sT (t̄[x 7→ ]) (t′ ⊗ t̄ x) if nextx t = t′, x ∈ T.

The ability to define this function (relatively) easily is the main advan-
tage of working with trace trees instead of co-call graphs at this stage.

As s is defined in terms of monotone operations, it is itself monotone in
its arguments t̄ and t.

Example
With the same arguments as above, for T = {y} the effect of calling y, i.e.
a call to z, happens only once, and we have

sT t̄ t =
yz

zy
yx .

�

We project a TTree to a value of type (Var → Card), as required for a
cardinality analysis, using c : TTree→ (Var→ Card) defined by

c(t) x :=


⊥, if x does not occur in t
1, if on each path in t, x occurs at most once
∞, otherwise.

From this definition it follows
Lemma 25
c(nextx t) v c(t)− x.
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Specification

A tree cardinality analysis determines for every expression e and arity
α the tree Tα(e) of calls to free variables of e which are performed by
evaluating e with α arguments and using the result in any way. As the
resulting value might be passed to unknown code or stored in a data
structure, we cannot assume anything about how often the resulting
value is used. This justifies the arity parameter: We expect T0(ńx. y) = y∗

but T1(ńx. y) = y.
I write Tᾱ(Γ) for the analysis lifted to bindings, returning⊥ for variables

not bound in Γ or mapped to ⊥ in ᾱ.
I also need a variant Tα(Γ, e) that, given bindings Γ, an expression e

and an arity α, reports the calls on dom Γ performed by e and Γ with these
bindings in scope.

I can now identify conditions on T that allow to satisfy the specifica-
tions in Definition 11.

Definition 14 (Tree cardinality analysis specification)
I expect the cardinality analysis to agree with the arity analysis on which
variables are called at all:

dom Tα(e) = domAα(e) (T-dom)

dom Tα(Γ, e) = domAα(Γ, e) (Th-dom)

Inequalities for the syntactic constructs:

x∗ ⊗ Tα+1(e) v Tα(e x) (T-App)

(Tα−1(e)) \ {x} v Tα(ńx. e) (T-Lam)

Tα(e[y := x]) v x∗ ⊗ (Tα(e)) \ {y} (T-subst)

x v Tα(x) (T-Var)

T0(e)⊗ (Tα(et)⊕ Tα(ef )) v Tα(e ? et : ef ) (T-If)

(sthunks Γ (TAα(Γ,e)(Γ)) (Tα(e))) \ dom Γ v Tα(let Γ in e) (T-Let)

For values, analysed without arguments, the analysis is expected to return
a repeatable tree:

isVal e =⇒ T0(e) is repeatable (T-value)
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The specification for Aα(Γ, e) is closely related to (T-Let):

(sthunks Γ (TAα(Γ,e)(Γ)) (Tα(e)))
∣∣
dom Γ v Tα(Γ, e) (Th-s)

And finally, the connection to the arity analysis:

x ∈ thunks Γ, c(Tα(Γ, e)) x = ∞ =⇒ (Aα(Γ, e)) x = 0 (Th-∞-thunk)
�

Safety

Given a tree cardinality analysis, I can define a cardinality analysis in
the sense of the previous section. The definition for Cα(Γ, e) is straight
forward:

Cα(Γ, e) := c(Tα(Γ, e)).

In order to define C(ᾱ,α,α̇)((Γ, e, S)) I need to fold the tree cardinality anal-
ysis over the stack:

Ṫ_([]) := ⊥
Ṫα·α̇((et : ef )·S) := Ṫα̇(S)⊗ (Tα(et)⊕ Tα(ef ))

Ṫα̇($x·S) := Ṫα̇(S)⊗ x∗

Ṫα̇(#x·S) := Ṫα̇(S).

With this I can define

C(ᾱ,α,α̇)((Γ, e, S)) := c
(
sthunks Γ (Tᾱ(Γ)) (Tα(e)⊗ Ṫα̇(S))

)
,

and set out to prove

Lemma 26
Given a tree cardinality analysis satisfying Definition 14, together with
an arity analysis satisfying Definition 6, the derived cardinality analysis
satisfies Definition 11.

Proof
The conditions (C-dom) and (Ch-dom) follow directly from (T-dom) and
(Th-dom) with (A-dom) and (Ah-dom).



156 The safety of Call Arity

The conditions (C-cong), (C-not-called) and (C-upd) follow directly
from the definitions of T and Ṫ

We have x∗ v Ṫα̇(S) for $x ∈ S, so (C-args) follows from

[x 7→ ∞] = c(x∗) v c(Ṫα̇(S)) v (C(ᾱ,α,α̇)((Γ, e, S))).

Similar calculations prove (C-call) using (T-Var), (C-App) using (T-App),
(C-Lam) using (T-subst) and (T-Lam), (C-If1) using (T-If).

Condition (C-If2) is where the precision comes from, as we retain the
knowledge that the two code paths are mutually exclusive. The proof is a
direct consequence of t v t⊕ t′.

The variable cases are interesting, as these interact with the heap, and
hence with the s function.

We first show that (C-Var′1) is fulfilled. Abbreviate T := thunks Γ and
note that x /∈ T. We have

C(ᾱ,ᾱ x,α̇)((Γ, e, S))

= c
(
sT (Tᾱ(Γ)) (Tᾱ x(e)⊗ Ṫα̇(S))

)
= c
(
sT (Tᾱ(Γ)) (nextx x⊗ Tᾱ x(e)⊗ Ṫα̇(S))

)
{ as nextx x = }

v c
(
sT (Tᾱ(Γ)) (nextx(x⊗ Ṫα̇(S)))⊗ Tᾱ x(e))

)
{ using (nextx t)⊗ t′ v nextx(t⊗ t′) }

= c
(
nextx(sT (Tᾱ(Γ)) (x⊗ Ṫα̇(S)))

)
{ by the definition of s }

v c
(
sT (Tᾱ(Γ)) (x⊗ Ṫα̇(S))

)
− x { by Lemma 25 }

v c
(
sT (Tᾱ(Γ)) (Tα(x)⊗ Ṫα̇(S))

)
− x { by (T-Var) and s monotone }

= C(ᾱ,α,α̇)((Γ, x, S))− x.

Condition (C-Var1) represents the evaluation of a thunk. The proof is
analogue, using Tᾱ(Γ)[x 7→ ] = Tᾱ(Γ′) in the step where the definition of
s is unfolded.

For (C-Var2) abbreviate T := thunks Γ = thunks(Γ[x 7→ e]). We know
isVal e, so T0(e) is repeatable, by (T-value). If a repeatable tree t is already
contained in the second argument to s, then we can remove it from the
range of the first argument:

sT (t̄[x 7→ t]) (t⊗ t′) = sT t̄ (t⊗ t′)
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Altogether, we show

C(ᾱ,0,α̇)((Γ[x 7→ e], e, S))

= c
(
sT (Tᾱ(Γ[x 7→ e])) (T0(e)⊗ Ṫα̇(S))

)
= c
(
sT (Tᾱ(Γ)[x 7→ Tᾱ x(e)]) (T0(e)⊗ Ṫα̇(S))

)
v c
(
sT (Tᾱ(Γ)[x 7→ T0(e)]) (T0(e)⊗ Ṫα̇(S))

)
= c
(
sT (Tᾱ(Γ)) (T0(e)⊗ Ṫα̇(S))

)
{ by T0(e) repeatable }

= C(ᾱ,0,α̇)((Γ, e, #x·S)).

Proving condition (C-Let) is for the most part a tedious calculation
involving freshness of variables. We use that if the domain of t̄′ is disjoint
from the variables occurring in t̄ (i.e. ∀y. ∀x ∈ t̄ y. t̄′ x = ), then

sT (t̄ t t̄′) t = sT t̄ (sT t̄′ t).

Abbreviating T := thunks Γ and T′ := thunks∆, we show:

C(Aα(∆,e)tᾱ,α,α̇)((∆ · Γ, e, S))

= c
(
sT∪T′ (TAα(∆,e)tᾱ(Γ · ∆)) (Tα(e)⊗ Ṫα̇(S))

)
= c
(
sT∪T′ (Tᾱ(Γ)) (sT∪T′ (TAα(∆,e)(∆)) (Tα(e)⊗ Ṫα̇(S)))

)
{ by the above equation }

= c
(
sT (Tᾱ(Γ)) (sT′ (TAα(∆,e)(∆)) (Tα(e)⊗ Ṫα̇(S)))

)
= c
(
sT (Tᾱ(Γ)) (sT′ (TAα(∆,e)(∆)) (Tα(e))⊗ Ṫα̇(S))

)
{ as dom∆ is fresh with regard to S }

= c
(
sT (Tᾱ(Γ)) (sT′ (TAα(∆,e)(∆)) (Tα(e))⊗ Ṫα̇(S))

)∣∣
dom∆t

c
(
sT (Tᾱ(Γ)) (sT′ (TAα(∆,e)(∆)) (Tα(e))⊗ Ṫα̇(S))

)
\ dom∆

= c
(
sT′ (TAα(∆,e)(∆)) (Tα(e))

∣∣
dom∆

)
t

c
(
sT (Tᾱ(Γ)) (sT′ (TAα(∆,e)(∆)) (Tα(e)) \ dom∆⊗ Ṫα̇(S))

)
v c
(
Tα(∆, e)

)
t c
(
sT (Tᾱ(Γ)) (Tα(let ∆ in e)⊗ Ṫα̇(S))

)
{ by (Th-s) and (T-Let) }

= Cα(∆, e) t C(ᾱ,α,α̇)((Γ, let ∆ in e, S)).

Finally, (Ah-∞-thunk) follows directly from (Th-∞-thunk). �
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4.3.3 Co-call cardinality analysis

The preceding section provides a framework for a cardinality analysis,
but the infinite nature of the TTree data type prevents an implementation
on that level. Therefore, the concrete implementation uses a practically
implementable data type which can serve as an approximation to trace
trees: The co-call graphs introduced in Section 3.2.

We can convert such a graph to a TTree, using the function t : Graph→
TTree given by

paths(t(G)) := {x1 · · · xn | ∀i. xi ∈ dom G ∧ ∀j 6= i. xi—xj ∈ G}.

Conversely, we can approximate a TTree by a Graph, as implemented
by the function g : TTree→ Graph where

g(t) :=
⊔
{ġ(ẋ) | ẋ ∈ paths t}

which uses ġ : [Var]→ Graph given by

dom ġ(x1 · · · xn) = {x1, . . . , xn}
ġ(x1 · · · xn) := {xi—xj | i 6= j ≤ n}.

The mappings t and g form a monotone Galois connection:

g(t) v G ⇐⇒ t v t(G).

It even is a Galois insertion, as g(t(G)) = G.

Example
For

t =
x

zzy
we have

g(t) = x
y

z
and

t(g(t)) =
x z

zzyz
zzyz

zz
y
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which shows that converting from trees to graphs and back loses informa-
tion, in particular about whether something is called twice or more often,
but the resulting tree still contains all the paths of the original tree. �

Specification

I proceed in the usual scheme, by giving a specification for a safe co-call
cardinality analysis, connecting it to the tree cardinality analysis, and
eventually proving that our implementation fulfils the specification.

A co-call cardinality analysis determines for each expression e and
incoming arity α its co-call graph Gα(e). As before, there is also a variant
that analyses bindings, written Gα(Γ, e). The conditions in the following
definition are obviously designed to connect to Definition 14.

Definition 15 (Co-call cardinality analysis specification)
We want the co-call graph analysis to agree with the arity analysis on
what is called at all:

domGα(e) = domAα(e) (G-dom)

As usual, we have inequalities for the syntactic constructs:

Gα+1(e) t ({x} × fv (e x)) v Gα(e x) (G-App)

Gα−1(e) \ {x} v Gα(ńx. e) (G-Lam)

Gα(e[y := x]) \ {x, y} v Gα(e) \ {x, y} (G-subst)

G0(e) t Gα(et) t Gα(ef ) t (domA0(e)× (domAα(et) ∪ domAα(ef )))

v Gα(e ? et : ef ) (G-If)

Gα(Γ, e) \ dom Γ v Gα(let Γ in e) (G-Let)

isVal e =⇒ (fv e)2 v G0(e) (G-value)

The following conditions concern Gα(Γ, e), which has to cater for the calls
originating in e,

Gα(e) v Gα(Γ, e), (Gh-body)

the calls originating in the right-hand-sides,

(x 7→ e′) ∈ Γ =⇒ GAα(Γ,e) x(e
′) v Gα(Γ, e), (Gh-heap)
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and finally the extra edges between what is called from the right-hand-
side of a variable and whatever the variable is called with:

(x 7→ e′) ∈ Γ, isVal(e′) =⇒
(fv e′)× Nx(Ga(γ, e)) v Gα(Γ, e). (Gh-extra)

For thunks, we can be slightly more precise: Only one call to them matters,
so we can ignore a possible edge x—x:

(x 7→ e′) ∈ Γ, ¬isVal(e′) =⇒
(fv e′)× (Nx(Ga(γ, e)) \ {x}) v Gα(Γ, e) (Gh-extra’)

Finally, we need to ensure that the cardinality analysis is actually used
by the arity analysis when dealing with thunks. For recursive bindings,
we never eta-expand thunks:

rec Γ, x ∈ thunks Γ, x ∈ domAα(Γ, e) =⇒
Aα(Γ, e) = 0 (Rec-∞-thunk)

But for a non-recursive thunk, we only have to worry about thunks which
are possibly called multiple times:

x /∈ fv e′, ¬isVal(e′), x—x ∈ Gα(Γ, e) =⇒
Aα([x 7→ e′], e) = 0 (Nonrec-∞-thunk)

�

Safety

From a co-call analysis fulfilling Definition 15 we can derive a tree cardi-
nality analysis fulfilling Definition 14, using

Tα(e) := t(Gα(e)).

The definition of Tα(Γ, e) differs for non-recursive and recursive bindings.
• For a non-recursive binding Γ = [x 7→ e′] we have Tα(Γ, e) :=

t(Gα(e))
∣∣
dom Γ and

• for recursive Γ we define Tα(Γ, e) := t((domAα(Γ, e))2), i.e. the
bound variables may call each other in any way.
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Lemma 27
Given a co-call cardinality analysis satisfying Definition 15, together with
an arity analysis satisfying Definition 6, the derived cardinality analysis
satisfies Definition 14.

Proof
Most conditions of Definition 14 follow by simple calculation from their
counterpart in Definition 15 using the Galois connection

t v t(G) ⇐⇒ g(t) v G

and identities such as g(t⊕ t′) = g(t)t g(t′) and g(t⊗ t′) = g(t)t g(t′)t
(dom t× dom t′).

For (T-Let), we use (G-Let) with the following Lemma 28, instantiated
with T = thunks Γ, t̄ = TAα(Γ,e)(Γ), t = Tα(e) and S = dom Γ. �

Lemma 28
Given
• g(t) v G,
• ∀x /∈ S. t̄ x = ⊥,
• ∀x ∈ S. g(t̄ x) v G,
• ∀x ∈ S, x /∈ T. dom (t̄ x)× Nx(G) v G and
• ∀x ∈ S, x ∈ T. dom (t̄ x)× (Nx(G) \ {x}) v G

we have g((sT t̄ t) \ S) v G.

Intuitively, this lemma describes how we can approximate the trace
tree that is the result of integrating trace trees representing the bound
expressions in a recursive binding with the trace tree describing the calls
from the body. The conditions specify that
• the body is approximated by the graph G,
• the set S encompasses all bound variables,
• the effect of each individual bound trace tree is approximated by G,
• for a non-thunk x, for every edge x—y ∈ G, there is also an edge

from y to anything that is called by x and
• similarly for a thunk x, but disregarding a possible loop x—x ∈ G.

The absence in G of an edge x—y for x, y ∈ S does not indicate that calls
to x are y are exclusive (they are mutually recursive, so typically both will
be called, many times), but rather that in an infinite unwrapping of the
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recursive let, as explained on page 102, the recursion proceeds with either
x or y. Therefore, the inequality in the conclusion of the lemma disregards
variables from S.

Proof
In order to prove g((sT t̄ t) \ S) v G, we have to show that ġ(ẋ \ S) v G
for every path ẋ ∈ paths(sT t̄ t). I write ẋ \ S for the list ẋ with all elements
in S filtered out.

The behaviour of the function s can also be described as follows: In
order to produce the path ẋ ∈ paths(sT t̄ t), s picks a specific path ẏ ∈
paths t (and disregards t otherwise). Going through each entry x on ẏ, the
function chooses a a specific path from t̄ x and interleaves it into ẏ after
the entry x. This procedure then continues with the interleaved path, at
the position following x.

In order to do a proof by induction, I strengthen the proposition, and
keep track of two sets: The set V of variables not in S that have been called
so far, and the set VT that keeps track of the thunks that have been called.
The assumptions of the strengthened proposition are
• ẋ is a path produced by interleaving the trees from t̄ into ẏ, as

described above,
• ġ(ẏ \VT) v G,
• V × (ẏ \VT) v G,
• V ∩ S = {},
• VT ⊆ S,
• ∀x ∈ VT , t̄ x = ⊥,

and we show not only g(ẋ \ S) v G, but also V × (ẋ \VT) v G.
With V = VT = {}, the assumptions are fulfilled, so by proving this

proposition, we conclude the lemma.
The statement is trivial for ẏ = ẋ = []. Otherwise, ẋ and ẏ are necessar-

ily headed by the same variable, so let ẏ = x · ẏ′ and ẋ = x · ẋ′, where ẋ′

is a path produced by interleaving the trees from t̄′ into an interleaving of
ẏ′ and ż, where ż is a path in the tree t̄ x and t̄′ is t̄ if x /∈ T and t̄[x 7→ ]
otherwise (cf. the definition of s on page 153).

There are three cases to consider:

• If x refers to a thunk that we have seen before (i.e. x ∈ VT), then t̄ x
is the empty tree. We invoke the inductive hypothesis with the same
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V and VT and obtain g(ẋ′ \ S) v G and V × (ẋ′ \ VT) v G. The
assumptions are fulfilled, as x ∈ VT and ż = [], and the conclusion
immediately implies the desired g(ẋ \ S) v G and V× (ẋ \VT) v G,
as x ∈ VT and x ∈ S due to VT ⊆ S.

• Otherwise, if x is a recursive call (i.e. x ∈ S), we again invoke the
inductive hypothesis, this time extending VT by x if x ∈ T. To
establish the assumptions, we first decompose what we have given:

ġ((x · ẏ′) \VT) = {x} × (ẏ′ \VT) t ġ(ẏ′ \VT).

and

V × ((x · ẏ′) \VT) = V × {x} tV × (ẏ′ \VT).

Furthermore, we note that g(ż \VT) v G.

It remains to show that V × (ż \ VT) v G. Above decomposition
provides V × {x} v G, so all calls seen so far are adjacent to x in
G, and thus V ⊆ Nx(G) \ {x}. Together with ż ⊆ dom (t̄ x) the
assumption of the lemma provides the desired inequality.

We then obtain g(ẋ′ \ S) v G and V× (ẋ′ \VT) v G, which, together
with V × {x} v G, implies the desired result.

• The remaining case is that of a call to something not in S, i.e. x /∈ S.

In this case, ż = [], so the above decompositions suffice to establish
the assumptions of the inductive hypothesis. This time, we extend
V with {x} and obtain g(ẋ′ \ S) v G and (V ∪ {x})× (ẋ′ \VT) v G.

This implies the desired result together with V × {x} v G and
{x} × (ẋ′ \ S) v G, which follows from the second conclusion of
the inductive hypothesis due to VT ⊆ S. �

4.3.4 Call Arity, concretely

At last I can give the complete and concrete co-call analysis corresponding
to GHC’s Call Arity, and establish its safety via our chain of refinements,
simply by checking the conditions in Definition 15. It is a slightly more
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concise reformulation of the specification given in Section 3.3.1, and ad-
justed to the restricted syntax where application arguments are always
variables.

The arity analysis is:

Aα(x) := [x 7→ α]

Aα(e x) := Aα+1(e) t [x 7→ 0]

Aα(ńx. e) := Aα−1(e) \ {x}
Aα(e ? et : ef ) := A0(e) tAα(et) tAα(ef )

Aα(Cb) := ⊥ for b ∈ {t, f}

The analysis of a let expression Aα(let Γ in e) as well as the analysis of
a binding Aα(Γ, e) are defined differently for recursive and non-recursive
bindings.

For a recursive Γ, we have Aα(let Γ in e) := ᾱ \ dom Γ and Aα(Γ, e) :=
ᾱ
∣∣
dom Γ where ᾱ is the least fixed point defined by the equation15

ᾱ = Aᾱ(Γ) tAα(e) t [x 7→ 0 | x ∈ thunks Γ].

For a non-recursive binding Γ = [x 7→ e′] we have Aα(let Γ in e) :=
(Aα′(e′) tAα(e)) \ dom Γ and Aα(Γ, e) := [x 7→ α′] where

α′ :=

{
0 if ¬isVal(e′) and x—x ∈ Gα(e)
Aα(e) x otherwise.

We have domGα(e) = domAα(e) and

Gα(x) := {}
Gα(e x) := Gα+1(e) t ({x} × fv (e x))

G0(ńx. e) := (fv e)2 \ {x}
Gα+1(ńx. e) := Gα(e) \ {x}

15The initial implementation of Call Arity did not include the third term in this equation,
and thunks would erroneously be eta-expanded if they happened to be part of a linearly
recursive bindings. Working towards this formalisation uncovered the bug (see GHC
commit 306d255).
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Gα(e ? et : ef ) := G0(e) t Gα(et) t Gα(ef ) t
(domA0(e)× (domAα(et) ∪ domAα(ef )))

Gα(Cb) := {} for b ∈ {t, f}
Gα(let Γ in e) := Gα(Γ, e) \ dom Γ

The analysis result for bindings is different for recursive and non-
recursive bindings and uses the auxiliary function

Gᾱ;G(x 7→ e′) :=

{
(fv(e′))2 if isVal(e′) ∧ x—x ∈ G
Gᾱ x(e′) otherwise,

which calculates the co-calls of an individual binding, adding the extra
edges between multiple invocations of a bound variable, unless it is bound
to a thunk and hence shared.

For recursive Γ we define Gα(Γ, e) as the least fixed point fulfilling

Gα(Γ, e) = Gα(e) t
⊔

(x 7→e′)∈Γ

GAα(Γ,e);Gα(Γ,e)(x 7→ e′)

t
⊔

(x 7→e′)∈Γ

(fv(e′)× Nx(Gα(Γ, e))).

For a non-recursive Γ = [x 7→ e′], we have

Gα(Γ, e) = Gα(e) t GAα(Γ,e);Gα(e)(x 7→ e′)

t
{
fv(e′)× (Nx(Gα(e)) \ {x}) if ¬isVal(e′)
fv(e′)× Nx(Gα(e)) if isVal(e′).

Theorem 5
Call Arity is safe (in the sense of Definition 5).

Proof
By straightforward calculation (and simple induction for (G-subst)), we
can show that the analyses fulfil Definitions 6 and 15. So by Lemmas 27,
26 and 23 and Corollary 19, Call Arity is safe. �
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4.4 The Isabelle formalisation

On their own, the proofs presented in the previous sections are involved,
but otherwise rather standard. What sets them apart from similar work is
that these proofs have been carried out in the interactive theorem prover
Isabelle [NPW02]. This provides a level of assurance that is hard to reach
using pen-and-paper-proofs.

4.4.1 Size and effort

But it also greatly increases the effort involved in obtaining a result like
Theorem 5. The Isabelle development corresponding to this chapter,
including the definitions of the syntax and the semantics (but excluding
unrelated results from Chapter 2, such as correctness and adequacy of the
semantics), contains roughly 12,000 lines of code with 1,200 lemmas (many
small, some large) in 75 theories, created over the course of 9 months
[Bre15d]. Much of the complexity is owed to the problem of bindings
and to the handling of monotonicity and continuity of the analysis. See
Section 2.6 for more information on the formalisation, especially how
using Nominal logic, as discussed (Sections 1.6 and 2.6.1) and the HOLCF
package (Section 1.7.3) has helped here.

So while the actual result shown here might not have warranted that
effort on its own – after all, performance regressions due to bugs in the
Call Arity analysis do not have very serious consequences – it lays ground
towards formalising more and more parts of the core data structures and
algorithms in our compilers.

4.4.2 Structure

The separation into individual theories (Isabelle’s equivalent to Haskell’s
modules) as well as the use of locales ([Bal14], Isabelle’s approximation to
a module system) helps to gain insight into the structure of an otherwise
very large proof, by ensuring a separation of concerns. For example, the
proof of JT0(e)K = JeK has only the conditions from Definition 6 available,
which shows that the cardinality analysis is irrelevant for functional
correctness.
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4.4.3 The trace tree type implementation

Isabelle/HOL is a logic of total functions, and it is not a surprise that it
has good support for inductive data types via the datatype command,
where each element of the type has a finite size. But the type of trace
trees introduced in Section 4.3.2 is not of that kind: To model program
behaviour with recursion I need infinite trees as well.

Fortunately, it is possible to define such types in Isabelle/HOL, and
there are actually a few options available:

• The HOLCF package can construct domains with an infinitely deep
structure from a domain equation like

TTree = Var→ TTree⊥

which can be implemented as

domain ( ′a::countable) tree ′= Node (lazy next ′ :: ′a discr→ ′a tree ′)
type_synonym ′a tree = ′a discr→ ′a tree ′

• The codatatype command provides support for co-inductive data
types, which can create the appropriate type directly:

codatatype (lset: ′a) tree = Node (nxt : ′a⇒ ′a tree option)

• The type can be constructed “by hand” using the plain typedef
command.

I have experimented with all three variants and found that the first two
approaches would not provide me with the right tools (e.g. definition
tools, induction principles) that allow me to efficiently define the required
operation and prove the required lemmas, so I turned to the “by hand”
construction.

To that end, I defined the notion of sets of lists where for every list, all
its prefixes are in the set as well. These are the downward-closed sets
under the prefix-order on lists:
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TTree.thydefinition downset :: ′a list set⇒ bool where
downset xss = (∀ x n. x ∈ xss −→ take n x ∈ xss)

Any non-empty downward-closed set is then such a trace tree:

typedef ′a ttree = {xss :: ′a list set . [] ∈ xss ∧ downset xss} by auto

A typedef is only admissible if the given set is not empty; this is the
proof obligation solved automatically using by auto; the set {[]}, corre-
sponding to the tree , is one possible witness of that.

In Section 4.3.2 I describe two concrete interpretation of trace trees:
As sets of traces and as automata with labelled transitions. The actual
type definition is based on the first, so the function paths returns nothing
but the representation of a tree based on that type definition. Using the
helpful machinery of the lifting package [HK13], this function is thus
defined to be the identity function, once the abstraction is removed:

lift_definition paths :: ′a ttree⇒ ′a list set is (λ x. x).

The automata view is realised by the two functions possible and nxt
which indicate what labels are present on the root’s edges, and the corre-
sponding child node.

lift_definition possible :: ′a ttree⇒ ′a⇒ bool
is λ xss x. ∃ xs. x#xs ∈ xss.

lift_definition nxt :: ′a ttree⇒ ′a⇒ ′a ttree
is λ xss x. insert [] {xs | xs. x#xs ∈ xss}
by (auto simp add: downset_def take_Suc_Cons[symmetric] simp del: take_Suc_Cons)

In order to make nxt a total function I add the empty list to the result,
which only matters if there was no edge with the requested label in the
given tree. The proof obligation following the definition ensures that the
result of nxt is a valid tree, i.e. non-empty and downward closed.

The important operations on trees, ⊕ and ⊗, are defined in terms of set
union and list interleavings. As the Isabelle theory for list interleavings
already uses the latter symbol, I use ⊕⊕ resp. ⊗⊗ in my formalisation for
the operations on trees:
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lift_definition either :: ′a ttree⇒ ′a ttree⇒ ′a ttree (infixl ⊕⊕ 80)
is op ∪
by (auto simp add: downset_def )

lift_definition both :: ′a ttree⇒ ′a ttree⇒ ′a ttree (infixl ⊗⊗ 86)
is λ xss yss .

⋃ {xs ⊗ ys | xs ys. xs ∈ xss ∧ ys ∈ yss}
by (force simp: ex_ex_eq_hint dest: interleave_butlast)

Further operations include, for example, the function without that is
defined in terms of filter:

lift_definition without :: ′a⇒ ′a ttree⇒ ′a ttree
is λ x xss. filter (λ x ′. x ′ 6= x) ‘ xss
by (auto intro: downset_filter)(metis filter.simps(1) imageI)

Operations like this and the similar ttree_restr are partly the reason
why using the existing infrastructure for co-inductive definitions failed,
as filtering is a notoriously difficult problem here: The paper [LH14]
discusses that problem in depth.

Most of the code in the Isabelle theory on trace trees is concerned with
the s function (see page 153), which is defined as

nextx(sT t̄ t) :=


⊥ if nextx t = ⊥
sT t̄ (t′ ⊗ t̄ x) if nextx t = t′, x /∈ T
sT (t̄[x 7→ ]) (t′ ⊗ t̄ x) if nextx t = t′, x ∈ T.

In the Isabelle formalisation, I first define a related predicate on traces
(substitute’), by recursion on the trace, as I need to prove that predicate to
be downward-closed before I can lift it to form the real substitute on trace
trees:

definition f_nxt :: ( ′a⇒ ′a ttree)⇒ ′a set⇒ ′a⇒ ( ′a⇒ ′a ttree)
where f_nxt f T x = (if x ∈ T then f (x:=empty) else f )

fun substitute ′ :: ( ′a⇒ ′a ttree)⇒ ′a set⇒ ′a ttree⇒ ′a list⇒ bool where
substitute ′_Nil: substitute ′ f T t []←→ True
| substitute ′_Cons: substitute ′ f T t (x#xs)←→



170 The safety of Call Arity

possible t x ∧ substitute ′ (f_nxt f T x) T (nxt t x ⊗⊗ f x) xs

lift_definition substitute :: ( ′a⇒ ′a ttree)⇒ ′a set⇒ ′a ttree⇒ ′a ttree
is λ f T t. Collect (substitute ′ f T t)
by (simp add: downset_substitute)

Depending on the proposition that one wants to show, a different
definition of substitute provides a more useful induction scheme. In this
alternative definition, it is emphasised that every path in sT t̄ t comes
from a specific path in t. I formalised this using the following inductive
definition and equivalence proof:

inductive substitute ′ ′ :: ( ′a⇒ ′a ttree)⇒ ′a set⇒ ′a list⇒ ′a list⇒ bool where
substitute ′ ′_Nil: substitute ′ ′ f T [] []
| substitute ′ ′_Cons:
zs ∈ paths (f x) =⇒ xs ′ ∈ interleave xs zs =⇒ substitute ′ ′ (f_nxt f T x) T xs ′ ys
=⇒ substitute ′ ′ f T (x#xs) (x#ys)

inductive_cases substitute ′ ′_NilE[elim]: substitute ′ ′ f T xs [] substitute ′ ′ f T [] xs
inductive_cases substitute ′ ′_ConsE[elim]: substitute ′ ′ f T (x#xs) ys

lemma substitute_substitute ′ ′:
xs ∈ paths (substitute f T t)←→ (∃ xs ′ ∈ paths t. substitute ′ ′ f T xs ′ xs)

This alternative definition is used in one direction of the following
lemma, which states that sT t̄ t

∣∣
S = sT t̄ (t

∣∣
S) holds if all of t̄, i.e. both its

domain as well as all variables in its range, are in the set S.

lemma ttree_rest_substitute2:
assumes ∀ x. carrier (f x) ⊆ S
assumes const_on f (−S) empty
shows ttree_restr S (substitute f T t) = substitute f T (ttree_restr S t)

This lemma, which I use implicitly without much ado in the proof on
page 157, is a good example how much intuitivity and proof difficulty can
differ:

It is quite obviously true, as s only acts on and adds edges with labels
in S, which is completely ignored by _

∣∣
S.

Nevertheless, the proof consists of more than 120 lines of Isar, not
counting supporting definitions such as the alternative definition of s.
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The complexity is owed to the fact that on both sides of the equality, we
have a filtered trees. Induction over a path of filtered tree is not very
useful, as in one step of the induction, still many (filtered) edges can be
traversed by s. So I need to get hold of the original, unfiltered tree, which
in a way hides behind an existential quantifier, and working in Isabelle
with such existentially quantified statement tends to require more explicit
steps.

This also confirms the observation that combining filter-like operations
and co-inductive definitions is tricky.

4.5 The formalisation gap

Every formalisation – whether hand-written or machine-checked – has
a formalisation gap, i.e. a difference to the formalised artefact that is not
(and often cannot) be formally bridged. Despite the effort that went into
this formalisation, the gap is not very narrow, and has been wide enough
to fall into.

4.5.1 Core vs. my syntax

The most obvious difference between formalisation and reality is the syn-
tax of the language: GHC’s Core (Fig. 2) is defined with 15 constructors,
while the small lambda calculus that I use to represent Core has only six
(Fig. 5 plus the two in Section 2.4.2). I argue that it is still a reasonable
representation of Core: As I explain in Section 3.4, the additional syntactic
constructs are irrelevant to our analysis: It either returns the trivial result
(literals, types, coercions), or transparently looks through them (casts,
ticks, type abstraction and applications).

A similar difference is that Core is typed. Nevertheless it is ok not to
include types in the formalisation, as the Call Arity analysis ignores them
anyways. One might now worry that the transformation might break type
safety. This does not happen, as the type-ignorant Call Arity code does
not actually transform the code: It merely annotates it, and the existing
general-purpose simplifier then actually eta-expands it, if the types allow
this. If they do not (which may be the case with type families), it will
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simply refuse to do so. This does not affect the safety results, as in my
proofs I always only require a lower bound on the analysis result (i.e. an
upper bound on the reported arity), so being less aggressive is always
safe.

4.5.2 Core vs. my semantics

As mentioned in Section 1.4.1, there is no official operational semantics
for GHC Core that captures its evaluation behaviour, besides the actual
implementation. It is folklore and my own understanding of GHC inner
workings that justify that I use Launchbury’s semantics to model Core’s
evaluation behaviour.

This is not without pitfalls: Core allows arbitrary expressions as ar-
guments, while my syntax follows Launchbury and restricts that to
variables. The transformation is rather simple: Just replace e1 e2 with
let z = e2 in e1 z – this is essentially the first step of the Core-to-STG
transformation as performed by GHC. But this is not the whole story: If
the argument already is a variable, i.e. e1 x, then no extra let-binding is
introduced.

This subtly changes the evaluation behaviour: While the evaluation
of e1 (x y) calls x at most once, the evaluation of e1 x can call x multiple
times. Therefore, the equation for Gα(e1 e2) in Fig. 12 has two cases.

Originally, the Call Arity code did not take that into account and would
return a wrong result in such instances. Interestingly, this could not be
observed: As the argument of an application e1 x is always analysed with
an incoming arity of 0, this would thus be the call arity of x, and no eta-
expansion would happen. Furthermore, when concluding the analysis of
the let-expression where x is bound, αx is definitely 0 and then, according
to the equations in Fig. 13 resp. Fig. 14, it does not matter whether x is
called multiple times.

It would make a noticeable difference if the cardinality result is to be
used elsewhere as well, e.g. to avoid the updating of thunks that are used
at most once anyways (Section 3.7.2): Preliminary testing confirms that
this leads to a huge increase of allocations and program run time if this
corner case had not been taken care of.

In order to prove such update-avoidance based on my (or any) analysis
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to be correct, one could use a semantics that models these update flags
explicitly. In [PB10] Pirog & Biernacki describe a big-step semantics for
STG which is operationally very close to the GHC runtime, as from it they
derive – formally verified(!) – a virtual machine equivalent to the STG
machine (cf. Section 1.4.3).

But as Call Arity is a Core-to-Core analysis, this clearly shows that there
is demand for a precise formal semantics for GHC’s Core with enough
detail to describe its evaluation and sharing behaviour. It would help to
avoid such mistakes and can serve as a reference for developers coming
up and implementing Core-to-Core transformations and other parts of
the compiler.

4.5.3 Core’s annotations

Identifiers in GHC’s core are annotated with a wealth of additional in-
formation – inlining information, occurrence information, strictness sig-
natures, demand information. As later phases rely on these information,
they have to be considered part of the language, and should be included
in a formal semantics.

This actually caused a nasty bug16 that appeared in the third release
candidate of GHC 7.10. The symptoms were weird: The program would
skip over a call to error and simply carry on with the rest of the code. With
Call Arity disabled, nothing surprising happened and the exception was
raised as expression. What went wrong?

It boiled down to a function

f :: a → b
f x = error ". . . "

which the strictness analyser annotates with <B,A>b, indicating that once
f is called with one argument, the result is definitely bottom.

In the code at hand, every call to f passes two arguments, i.e. case f x y
of {. . . }. Therefore, Call Arity determines f’s external arity to be 2, and
changes the definition to

16https://ghc.haskell.org/trac/ghc/ticket/10176

https://ghc.haskell.org/trac/ghc/ticket/10176
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f x y = error ". . . " y

The strictness annotation on f, however, is still present, allowing the
simplifier to change the code that contains the call to f to case f x of {},
as passing one argument is enough to cause the exception to be raised. It
also removes all alternatives from the case, as the control flow will not
return.

On their own, each transformation is correct; together, havoc is created:
Due to the eta-expansion, the evaluation of f x does not raise an exception.
Because the case expression has no alternatives any more, the execution of
the final program continues at some other, undefined part of the program.

One way to fix this would be to completely remove annotations that
might no longer be true after eta-expanding a function definition, losing
the benefit that these annotations provide. The actual fix was more careful
and capped the reported arity at the number of arguments with which,
according to the strictness signature, the function is definitely bottom.

4.5.4 Implementation vs. formalisation

Clearly I have formalised and verified the algorithm behind Call Arity, but
not the implementation. For example, the Isabelle code simply uses fix to
calculate the least fixedpoint during the analysis of a recursive let, where
the implementation has to explicitly iterate the analysis result, starting
from bottom and stopping when a fixed point is reached. Termination of
this implementation is not handled formally, and neither the correctness
of the implementation with regard to its formal description here or in the
Isabelle theories.

I currently do not see a practical way to do so: There are a few Haskell-
specific formal methods, e.g. refinement types in the form of Liquid
Haskell [VSJVP14], but they are not powerful enough to do such a full-
fledged correctness proof with regard to a formal specification. Another
approach would be to employ Isabelle to verify the implementation: As
Haftmann writes [Haf10], this requires either a conversion of the Haskell
implementation into Isabelle using the tool Haskabelle or to go the other
way and using Isabelle’s code generation features [Haf09] to produce
the implementation from the Isabelle definition. Either direction would
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require formalising large parts of the existing GHC codebase itself – a
daunting prospect.

Furthermore, GHC works with Haskell code that is structured in mod-
ules and packages; this naturally affects the implementation, which will,
for example, not collect arity and co-call information for external identi-
fiers, as they cannot be used anyways (see Section 3.4.1). This implemen-
tation short-cut is ignored here.

4.5.5 Performance and safety in the larger context

Call Arity is but one transformation in a large number of analyses and
transformations performed by GHC, and the safety result established
in this chapter does not immediately carry over to the whole thing. It
is quite possible that a subsequent transformation works better on the
original code e than on the transformed code T0(e), and that this difference
outweighs the improvement due to Call Arity. In that sense, the safety
theorem is not composable.

The property that I would like to be able to assume about the other
transformations is monotonicity: If e2 is better than e1 before the transfor-
mation, then the transformed e2 is better than the transformed e1, where
“better” refers to the abstract performance measure used – in my case,
the number of allocations. Then it would follow from my safety theorem
that the insertion of Call Arity in the sequence of transformations will not
make the end result perform worse.

In practice, this assumption is certainly “somewhat true”, i.e. holds in
common cases, as also shown by the empirical results. But it is unlikely
true in a complete and rigorous sense, i.e. I expect that one can construct
corner cases where it does not hold.

Finally, my formal notion of performance is of course just an approxi-
mation for real performance, justified by little more than the empirically
observed good correlation between allocations and execution time. For-
mally capturing the actual runtime of a program on modern hardware
with multiple cores, long instruction pipelines, branch prediction and
complex caches is currently way out of reach.
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4.6 Related work

This work connects arity and cardinality analyses with operational safety
properties, using an interactive theorem prover to verify its claims; as
such this is a first.

However, this is not the first compiler transformation proven correct
in an interactive theorem prover. After all there is CompCert (e.g. [Ler06;
Ler12]), a complete verified optimising compiler for C implemented in
Coq. Furthermore, a verified Java to Java bytecode compiler [Loc10] was
written using Isabelle’s code generation facilities, and the CakeML project
has produced, among other things, a verified compiler from CakeML to
CakeML bytecode, implemented in the HOL4 theorem prover [KMNO14].
The Vellvm project provides formal semantics for LLVM’s intermediate
representation and uses it for formal verification of compiler transforma-
tions [ZNMZ13]. These projects address functional correctness, though,
and not (yet) performance.

Using a resource aware program logic for a subset of Java bytecode,
which they have implemented in Isabelle, Aspinall, Beringer and Momi-
gliano validate local optimisations [ABM07] to be indeed optimisations
with regard to a variety of resource algebras. Following the precedent set
by transformation validation, in this work the safety of the transformation
is not proved once and for all, but rather for every conrete program a
proof is constructed. The Isabelle formalisations of the proofs seem to be
lost.

In the realm of functional programming languages, a number of for-
mal treatments of compiler transformations exist, e.g. verification of the
CPS transformation in Coq (e.g. [Chl10; DL07]), Twelf (e.g. [Tia06]) or
Isabelle (e.g. [MO03]). As their focus lies on finding proper techniques for
handling naming, their semantics do not express heap usage and sharing.

An approach that necessarly produces safe program transformations
are generated transformations: Here, a large number of possible pro-
gram transformations of a specific form are mechanically enumerated
and checked if they are both semantics preserving and performance im-
proving; these checks often build on SMT solvers. The selected concrete
transformations are then safe by construction. Examples of this line of
research include [JNR02], [BA06] and [Buc15].
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Sand’s improvement theory [San92] provides a general, inequational
algebra to describe the effect of program transformations on performance.
Its notion of improvement is similar to my notion of safety, while the more
general notion of weak improvement allows performance regressions up
to a constant factor. This theory was adapted for lazy languages, both for
improvement of time [MS99] and space [GS99; GS01].

Recently, Hackett and Hutten [HH14] took up on Sands’ work and built
a general framework to prove worker/wrapper transformations time improv-
ing. And while neither that nor Sands’s work have yet been machine-
checked, at least the semantic correctness of Hutton’s worker/wrapper
framework has been verified using Isabelle [Gam09].

Could I have built my results on theirs, especially as [HH14] uses
almost the same abstract machine? Indeed, eta-expansion can be phrased
as an instance of the worker/wrapper transformation, with abstraction
and representation contexts Abs = [] and Rep = (ńz1 . . . zn. ([] z1 . . . zn)).
Unfortunately, the assumptions of the worker/wrapper improvement
theorem are not satisfied, and this is to be expected: Sands’ notion of
improvement – and hence Hackett and Hutton’s theorems – guarantee
improvement in all contexts, while in my case the eta-expansion is justified
by an analysis of the actual context, and is generally unsafe in other
contexts.

So in the current form, improvement theory is tailored to local transfor-
mations and, as Sands points out in [GS01], would require the introduction
of context information to apply to whole-program transformations such
as Call Arity. Such a grand unified improvement theory for call-by-need
would be a tremendously useful thing to have.





Excuse me, but real programmer use
butterflies.

Randall Munroe, xkcd #378

CHAPTER 5

Conclusion

IN this work, I have spanned the arc from down-to-earth compiler trans-
formations over formal semantics to machine-verified proofs of opera-

tional properties of the compiler transformation.

By introducing the Call Arity analysis into the Haskell compiler GHC, I
made it practically possible to let an important class of list-consuming and
-processing functions take part in the list fusion program transformation,
which is an important mechanism to make idiomatic Haskell code perform
well. This solves a long-standing open issue.

My key observation was that in the context of a lazy programming
language, a good arity analysis requires the help of a precise cardinality
analysis, and my key contribution is the novel cardinality analysis based
on the notion of co-call graphs, which allows the compiler to get precise
information about how often a variable is used, even if the call occurs
from within a recursive function.

Empirical measurements show that introducing the analysis improves
the performance of some programs in the standard benchmark suite. Fur-
thermore, changing the definitions of list consumers with accumulators
to now take part in list fusion provides a more significant performance
boost to a number of existing programs, and a huge improvement to some
programs. Thus it now allows performance-aware programmers to write
more high-level code, instead of manually transforming their code into

http://xkcd.com/378
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a less idiomatic form to make up for the compiler’s previous inability to
produce good code in these situations.

One can consider Call Arity to be a whole-program analysis, given that
it works best if all occurrences of a function are known. I have shown
that a compiler employing separate compilation can still make good use
of such a transformation, as inlining in some cases gives the analysis the
chance to see all use-sites of a function’s definition.

To pave the way to a formal treatment of such analyses and transfor-
mations of lazy functional programs, I created a formalisation of Launch-
bury’s natural semantics, of Sestoft’s mark-1 abstract machine and of
related denotational semantics in the interactive theorem prover Isabelle.
These reusable artefacts extend the growing library of formalisations and
lower the barrier of entry for formalising further research on program-
ming languages in a machine-checked setting.

The formalisation contains a proof of the adequacy of Launchbury’s
natural semantics with regard to a standard denotational semantics. The
original paper only sketches this proof, and the sketch has so far resisted
attempts to complete it with rigour. By slightly deviating from the path
outlined in the proof sketch, I found a more elegant and more direct proof
of adequacy, which is also machine-checked. This does not shake the
foundations a large swathes of research, as the adequacy theorem holds
as expected, but it fortifies them instead.

My formalisation builds on relatively new mechanisms for dealing with
names and binders in Isabelle, namely the Isabelle package Nominal2,
and constitutes one of the largest developments using this technology.
It is also the first to combine it with domain theory in the form of the
HOLCF package.

Finally, I used these formalised semantics to model the Call Arity anal-
ysis and transformation and proved not only functional correctness, but
also – and especially – safety: The performance of the program is not
reduced by applying the Call Arity transformation.

I chose to measure performance by counting the number of dynamic
allocations, and I explain why this measure is suitable to ensure that the
Call Arity analysis does not go wrong, and that it is a good compromise
between formal tractability and “real” performance.
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I introduced the notion of trace trees as a suitable abstract type to think
and reason about cardinality analyses. My proof is modularised using
Isabelle’s locales, making it possible to re-use just parts of it. This should
make similar formalisation endeavours, such as a safety proof of the other
arity and cardinality related analyses in GHC, more tractable.

As with most formalisation attempts, by pursuing it I have improved
the understanding of how and why the analysis works, sharpened its
specification and rooted out bugs that the conventional test suite did not
find.

Operational properties of compiler transformations, such as safety,
are rarely investigated on a formal level, especially not with the rigour
provided by a theorem prover. I have demonstrated that such a feat is
possible, with an effort that may be justified in certain high-stake use
cases.

There are limits to the applicability of my safety theorem, as Call Arity
is but one step in a large sequence of other analyses and transformations
performed by the compiler. Therefore, the no-regression result does not
transfer to the complete compiler in complete universality: For example, if
subsequent transformations were not monotonous, then the introduction
of Call Arity could have an overall negative effect on some programs. I
elaborate on this and other aspects of the “formalisation gap” immanent
in such formal work.

To overcome some of the formalisation gap, it would be desirable to
formalise GHC’s Core in Isabelle. Using Isabelle’s code generation to
Haskell and GHC’s plugin architecture, even verified implementations of
Core-to-Core transformations in GHC would appear to be within reach.
This would be a milestone on the way to formally verified compilation of
Real-World-Haskell.

All in all, this thesis exhibits an approach to the design and development
of compiler transformations that is supported by formal methods. I hope
that it will inspire more researchers in this field to dare to not only test
their claims, but actually prove them, and to even do that with the rigour
provided by machine-checked proofs.





Honk iff you love formal logic.

Randall Munroe, xkcd #1033

APPENDIX A

Formal definitions and
main theorems

POLEMICALLY speaking, formal proofs are irrelevant – only their exis-
tence matters. Once a proposition has been proved, and the proof has

been checked by the theorem prover, this is all that matters to a reader
interested in just the assurance that the proof is fine.

The same cannot be said for definitions and theorems: The machine
cannot check whether these really state what the author claims them to
state! Therefore, this appendix reproduces the Isabelle formulation of
the main theorems of this thesis, together with all definitions required to
understand them.

The intention is to enable the reader to check the formal results precisely,
without reaching out for the actual Isabelle sources. Naturally, this does
not protect against malice on the side of the author. To rule that out, you’d
not only have to process the Isabelle sources yourself, but also verify
each line of code for tricks such as introducing new axioms, using other
unchecked commands or messing with the parser and printer to obtain
misleading results. There is a certain level of assurance that this is not
the case, as my work has been accepted in the Archive of Formal Proofs
[Bre13; Bre15d].

http://xkcd.com/1033
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The listings reproduce the Isabelle code as typed, and hence do not
benefit from Isabelle’s pretty-printing abilities; the name of the Isabelle
theory file that contains the code is printed next to the listing, unless the
previous listing is from the same file.

For a few functions, not the actual, technical definition is given here,
but rather a proposition involving the function that completely describes
it. In these cases, the definition that one intuitively wants is not accepted
by the definitory command (e.g. using definition to define a function in
HOLCF’s type of continuous functions) or the proof obligations produced
by such a command are hard to discharge, and a different formulation
is easier to work with, and can later be shown to be equivalent to the
desired formulation (e.g. with nominal_function’s equivariance obliga-
tions). Also, in the cases where I use locales to abstract over similar
definitions, reproducing the locale interface, the abstract function defini-
tion and the actual instantiation of the locale would obscure the view, so I
describe the resulting function as if I had defined it directly.

In the end, in Isabelle/HOL, it does not matter whether a function is
define with one set of equations or another: As long as they fully describe
the function (i.e. if they are exhaustive and terminating), the resulting
constant is identical for all purposes.

A.1 Terms

The definition of the type of terms requires that the type of variables are
defined first. In order to use the Nominal machinery, I need to declare that
type using the atom_decl command. To us, the resulting type is abstract,
and all that we know about it is that it is countably infinite:

Vars.thyatom_decl var

Based on that, I define our type of lambda expressions is defined as
follows. See Section 2.6.1 for an explanation of this construction:

Terms.thynominal_datatype exp =
Var var
| App exp var
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| LetA as::assn body::exp binds bn as in body as
| Lam x::var body::exp binds x in body (Lam [_]. _ [100, 100] 100)
| Bool bool
| IfThenElse exp exp exp (((_)/ ? (_)/ : (_)) [0, 0, 10] 10)
and assn =
ANil | ACons var exp assn

binder
bn :: assn⇒ atom list

where bn ANil = [] | bn (ACons x t as) = (atom x) # (bn as)

The function atom is provided by the Nominal package. It embeds our
type var into the type atom encompassing all possible name types, but as
we use only one such type in our formalisation, one can assume var and
atom to be isomorphic.

Only lambda abstractions and Booleans are considered to be values, as
characterised by the following function:

nominal_function isVal :: exp⇒ bool where
isVal (Var x) = False |
isVal (Lam [x]. e) = True |
isVal (App e x) = False |
isVal (Let as e) = False |
isVal (Bool b) = True |
isVal (scrut ? e1 : e2) = False

The type heap that occurs in some of the listing is but a type abbreviation:

type_synonym heap = (var × exp) list

The domain of such a heap is the set of variables that are bound to some
expression:

AList-Utils.thydefinition domA
where domA h = fst ‘ set h

As explained in Section 2.6.1, the type assn is but a work-around, and
we’d really like the Let constructor to have such an heap as the parameter.
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Therefore, I define a conversion function and define Let in terms of that;
from then on, LetA is not used:

Terms.thyfun heapToAssn :: heap⇒ assn
where heapToAssn [] = ANil
| heapToAssn ((v,e)#Γ) = ACons v e (heapToAssn Γ)

definition Let :: heap⇒ exp⇒ exp
where Let Γ e = LetA (heapToAssn Γ) e

We will use substitution of one variable for another, in variables, ex-
pressions and heaps. For variables, this is easily defined:

Substitution.thyfun
subst_var :: var⇒ var⇒ var⇒ var (_[_::v=_] [1000,100,100] 1000)

where x[y ::v= z] = (if x = y then z else x)

For expressions and heaps, due to them being mutually recursive,
the definition is more involved. In particular, I had to jump through
a few hoops to be able to discharge the proof obligations produced by
nominal_function; the complex default and invariant annotations were
required for that:

nominal_function (default case_sum (λx. Inl undefined) (λx. Inr undefined),
invariant λ a r . (∀ Γ y z . ((a = Inr (Γ, y, z) ∧ atom ‘ domA Γ ]∗ (y, z))

−→ map (λx . atom (fst x)) (Sum_Type.projr r) = map (λx . atom (fst x)) Γ)))
subst :: exp⇒ var⇒ var⇒ exp (_[_::=_] [1000,100,100] 1000)

and
subst_heap :: heap⇒ var⇒ var⇒ heap (_[_::h=_] [1000,100,100] 1000)

where
(Var x)[y ::= z] = Var (x[y ::v= z])
| (App e v)[y ::= z] = App (e[y ::= z]) (v[y ::v= z])
| atom ‘ domA Γ ]∗ (y,z) =⇒
(Let Γ body)[y ::= z] = Let (Γ[y ::h= z]) (body[y ::= z])
| atom x ] (y,z) =⇒ (Lam [x].e)[y ::= z] = Lam [x].(e[y::=z])
| (Bool b)[y ::= z] = Bool b
| (scrut ? e1 : e2)[y ::= z] = (scrut[y ::= z] ? e1[y ::= z] : e2[y ::= z])
| [][y ::h= z] = []
| ((v,e)# Γ)[y ::h= z] = (v, e[y ::= z])# (Γ[y ::h= z])
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A.2 Semantics

A.2.1 Natural semantics

Launchbury’s natural semantics is defined as an inductive predicate:

Launchbury.thyinductive
reds :: heap⇒ exp⇒ var list⇒ heap⇒ exp⇒ bool
(_ : _ ⇓_ _ : _ [50,50,50,50] 50)

where
Lambda:

Γ : (Lam [x]. e) ⇓L Γ : (Lam [x]. e)
| Application: [[

atom y ] (Γ,e,x,L,∆,Θ,z) ;
Γ : e ⇓L ∆ : (Lam [y]. e ′);
∆ : e ′[y ::= x] ⇓L Θ : z
]] =⇒

Γ : App e x ⇓L Θ : z
| Variable: [[

map_of Γ x = Some e; delete x Γ : e ⇓x#L ∆ : z
]] =⇒
Γ : Var x ⇓L (x, z) # ∆ : z
| Let: [[

atom ‘ domA ∆ ]∗ (Γ, L);
∆ @ Γ : body ⇓L Θ : z
]] =⇒
Γ : Let ∆ body ⇓L Θ : z
| Bool:

Γ : Bool b ⇓L Γ : Bool b
| IfThenElse: [[

Γ : scrut ⇓L ∆ : (Bool b);
∆ : (if b then e1 else e2) ⇓L Θ : z
]] =⇒

Γ : (scrut ? e1 : e2) ⇓L Θ : z

The denotational semantics maps expressions to a denotational domain,
which is defined using the HOLCF machinery:

Value.thydomain Value = Fn (lazy Value→ Value) | B (lazy bool discr)
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fixrec Fn_project :: Value→ Value→ Value
where Fn_project·(Fn·f ) = f

abbreviation Fn_project_abbr (infix ↓Fn 55)
where f ↓Fn v ≡ Fn_project·f ·v

A.2.2 Small-step semantics

Sestoft’s mark-1 abstract machine is defined via the inductive command,
which is convenient even if there is no recursion. I also introduce some
nicer syntax for the transitive reflexive closure.

Sestoft.thyinductive step :: conf ⇒ conf ⇒ bool (infix⇒ 50) where
app1: (Γ, App e x, S)⇒ (Γ, e , Arg x # S)
| app2: (Γ, Lam [y]. e, Arg x # S)⇒ (Γ, e[y ::= x] , S)
| var1: map_of Γ x = Some e =⇒ (Γ, Var x, S)⇒ (delete x Γ, e , Upd x # S)
| var2: x /∈ domA Γ =⇒ isVal e =⇒ (Γ, e, Upd x # S)⇒ ((x,e)# Γ, e , S)
| let1: atom ‘ domA ∆ ]∗ Γ =⇒ atom ‘ domA ∆ ]∗ S

=⇒ (Γ, Let ∆ e, S)⇒ (∆@Γ, e , S)
| if 1: (Γ, scrut ? e1 : e2, S)⇒ (Γ, scrut, Alts e1 e2 # S)
| if 2: (Γ, Bool b, Alts e1 e2 # S)⇒ (Γ, if b then e1 else e2, S)

abbreviation steps (infix⇒∗ 50) where steps ≡ step∗∗

The type conf in the signature of step is also but a type synonym:

SestoftConf.thytype_synonym conf = (heap × exp × stack)

A.2.3 Denotational semantics

The denotational semantics is defined by instantiating a more abstract
locale, as explained in Section 2.6.3. The following equations fully describe
the result, though.

Denotational.thyabbreviation
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ESem_syn ′ ′ :: exp⇒ (var => Value)⇒ Value ([[ _ ]]_ [60,60] 60)
where [[ e ]]$ ≡ ESem e · $

lemma ESem_simps:
[[ Lam [x]. e ]]$ = Fn·(Λ v. [[ e ]]$(x := v))

[[ App e x ]]$ = [[ e ]]$ ↓Fn $ x
[[ Var x ]]$ = $ x
[[ Bool b ]]$ = B·(Discr b)
[[ (scrut ? e1 : e2) ]]$ = B_project·([[ scrut ]]$)·([[ e1 ]]$)·([[ e2 ]]$)
[[ Let Γ body ]]$ = [[body]]{|Γ|}$

Towards defining the recursive heap semantics, the function evalHeap
maps a given evaluation function (e.g. the HSem above) over the heap,
producing a function from variable names to values. As this definition
is yet abstract in the choices of expression and value types, its signature
contains lots of type variables:

EvalHeap.thyfun
evalHeap :: ( ′var × ′exp) list⇒ ( ′exp⇒ ′value::{pure,pcpo})⇒ ′var⇒ ′value

where
evalHeap [] _ = ⊥
| evalHeap ((x,e)#h) eval = (evalHeap h eval) (x := eval e)

I introduce nicer syntax for this operation and then define the heap
semantics using the fixed-point operator from HOLCF:

HeapSemantics.thyabbreviation HSem_syn ({| _ |}_ [0,60] 60)
where {|Γ|}$ ≡ HSem Γ · $

lemma HSem_def ′: {|Γ|}$ = (µ $ ′. $ ++domA Γ [[Γ]]$ ′)

The following listings will mention the restriction of an environment to
a set, which is defined as follows:

Env.thydefinition env_restr :: ′a set⇒ ( ′a⇒ ′b::pcpo)⇒ ( ′a⇒ ′b)
where env_restr S m = (λ x. if x ∈ S then m x else ⊥)

abbreviation env_restr_rev (infixl f |‘ 110)
where env_restr_rev m S ≡ env_restr S m
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A.3 Correctness and adequacy theorems

The main results from Chapter 2 are the correctness and adequacy of the
natural semantics with regard to the standard denotational semantics.

The correctness theorem (Theorem 2) is as follows. Note that the as-
sumption of closedness is written out explicitly.

CorrectnessOriginal.thytheorem correctness:
assumes Γ : e ⇓L ∆ : v
and fv (Γ, e) ⊆ set L ∪ domA Γ
shows [[e]]{|Γ|}$ = [[v]]{|∆|}$
and ({|Γ|}$) f |‘ domA Γ = ({|∆|}$) f |‘ domA Γ

The adequacy theorem (Theorem 3) corresponds even closer to the
original formulation. Note that the set S of variables to avoid is uncon-
strained, i.e. the theorem can produce a judgement for every choice of S.
This only works because the set is represented as a list in the formalisation,
otherwise finiteness of the set would have to be required explicitly.

Adequacy.thytheorem adequacy:
assumes [[e]]{|Γ|} 6= ⊥
shows ∃ ∆ v. Γ : e ⇓S ∆ : v

A.4 Call Arity

For the formalisation of Chapter 4, I introduce a few custom data types.

A.4.1 Arities

I define the type Arity as an isomorphic copy the type of naturals:

Arity.thytypedef Arity = UNIV :: nat set
morphisms Rep_Arity to_Arity by auto

Having a dedicated type for arities allows me to define the partial order
required here. Note that it swaps the arguments of ≤:
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instantiation Arity :: po
begin
lift_definition below_Arity :: Arity⇒ Arity⇒ bool is λ x y . y ≤ x.

On the other hand, this additional abstraction layers requires me to lift
a few definitions from the naturals, in particular zero and the predecessor
and successor functions. The latter are defined in two steps: First lifting
the function to Arity, and then into HOLCF’s type of continuous functions:

instantiation Arity :: zero
begin
lift_definition zero_Arity :: Arity is 0.
instance..
end

lift_definition inc_Arity :: Arity⇒ Arity is Suc.
lift_definition pred_Arity :: Arity⇒ Arity is (λ x . x − 1).

definition inc :: Arity→ Arity where
inc = (Λ x. inc_Arity x)

definition pred :: Arity→ Arity where
pred = (Λ x. pred_Arity x)

The type AEnv of arity environments is simply var ⇒ Arity⊥. The
following functions provide some useful operations on such and similar
environments: The domain of an environments, singleton environments,
and removal of one entry.

Env.thydefinition edom :: ( ′key⇒ ′value::pcpo)⇒ ′key set
where edom m = {x. m x 6= ⊥}

lemma esing_simps[simp]:
(esing x · n) x = n
x ′ 6= x =⇒ (esing x · n) x ′= ⊥

definition env_delete :: ′a⇒ ( ′a⇒ ′b)⇒ ( ′a⇒ ′b::pcpo)
where env_delete x m = m(x := ⊥)
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A.4.2 Co-call graphs

The type CoCalls of co-call Graphs is defined to be isomorphic to the set
of symmetric relations on var:

CoCallGraph.thytypedef CoCalls = {G :: (var × var) set. sym G}
morphisms Rep_CoCall Abs_CoCall
by (auto intro: exI[where x = {}] symI)

setup_lifting type_definition_CoCalls

The relevant operations are the calculation of the field of the relation,
the member relation, the removal of a node from the graph, the restriction
to a set, the Cartesian products and the set of neighbours.

lift_definition ccField :: CoCalls⇒ var set is Field.

lift_definition
inCC :: var⇒ var⇒ CoCalls⇒ bool (_−−_∈_ [1000, 1000, 900] 900)
is λ x y s. (x,y) ∈ s.

abbreviation
notInCC :: var⇒ var⇒ CoCalls⇒ bool (_−−_/∈_ [1000, 1000, 900] 900)
where x−−y/∈S ≡ ¬ x−−y∈S

lift_definition cc_delete :: var⇒ CoCalls⇒ CoCalls
is λ z. Set.filter (λ (x,y) . x 6= z ∧ y 6= z)

lift_definition cc_restr :: var set⇒ CoCalls⇒ CoCalls
is λ S. Set.filter (λ (x,y) . x ∈ S ∧ y ∈ S)

lift_definition ccProd :: var set⇒ var set⇒ CoCalls (infixr G× 90)
is λ S1 S2. S1 × S2 ∪ S2 × S1
by (auto intro!: symI elim: symE)

definition ccSquare (_2 [80] 80)
where S2 = ccProd S S

lift_definition ccNeighbors :: var⇒ CoCalls⇒ var set
is λ x G. {y .(y,x) ∈ G ∨ (x,y) ∈ G}.
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A.4.3 The Call Arity analysis

The equations for the arity analysis are mutually recursive with a few
auxiliary functions to handle the heap.

CoCallAnalysisImpl.thylemma Aexp_simps[simp]:
Aa(Var x) = esing x·(up·a)
Aa(Lam [x]. e) = env_delete x (Apred·a e)
Aa(App e x) = Aexp e·(inc·a) t esing x·(up·0)
¬ nonrec Γ =⇒Aa(Let Γ e) =
(Afix Γ·(Aa e t (λ_.up·0) f |‘ thunks Γ)) f |‘ (− domA Γ)

x /∈ fv e ′=⇒Aa(let x be e ′ in e) =
env_delete x (A⊥ABind_nonrec x e ′·(Aa e, Ga e) e ′ t Aa e)
Aa(Bool b) = ⊥
Aa(scrut ? e1 : e2) = A0 scrut t Aa e1 t Aa e2

lemma CCexp_simps[simp]:
Ga(Var x) = ⊥
G0(Lam [x]. e) = (fv (Lam [x]. e))2

Ginc·a(Lam [x]. e) = cc_delete x (Ga e)
Ga (App e x) = Ginc·a e t {x} G×insert x (fv e)
¬ nonrec Γ =⇒ Ga (Let Γ e) =
(CCfix Γ·(Afix Γ·(Aa e t (λ_.up·0) f |‘ thunks Γ), Ga e)) G|‘ (− domA Γ)

x /∈ fv e ′=⇒ Ga (let x be e ′ in e) =
cc_delete x
(ccBind x e ′ ·(Aheap_nonrec x e ′·(Aa e, Ga e), Ga e)
t fv e ′G× (ccNeighbors x (Ga e) − (if isVal e ′ then {} else {x})) t Ga e)

Ga (Bool b) = ⊥
Ga (scrut ? e1 : e2) =
G0 scrut t (Ga e1 t Ga e2) t
edom (A0 scrut) G× (edom (Aa e1) ∪ edom (Aa e2))

A superscripted ⊥ indicates that the function is lifted to Arity⊥:

ArityAnalysisSig.thyabbreviation Aexp_bot_syn (A⊥_)
where A⊥a e ≡ fup·(Aexp e)·a
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CoCallAnalysisSig.thyabbreviation ccExp_bot_syn (G⊥_)
where G⊥a ≡ (λe. fup·(ccExp e)·a)

The function Afix, building on ABinds and ABind, implements the fix-
pointing in the arity analysis:

ArityAnalysisAbinds.thylemma ABind_eq[simp]: ABind v e · ae = A⊥ae v e

fun ABinds :: heap⇒ (AEnv→ AEnv)
where ABinds [] = ⊥
| ABinds ((v,e)#binds) = ABind v e t ABinds (delete v binds)

ArityAnalysisFix.thylemma Afix_eq: Afix Γ·ae = (µ ae ′. (ABinds Γ·ae ′) t ae)

In the non-recursive case, the function ABind_nonrec is used; this is
where the arity analysis depends on the co-call cardinality analysis.

CoCallFix.thylemma ABind_nonrec_eq:
ABind_nonrec x e·(ae,G) = (if isVal e ∨ x−−x/∈G then ae x else up·0)

The fixed-point calculation of the co-call-graph is defined similarly:

CoCallAnalysisBinds.thylemma ccBind_eq:
ccBind v e·(ae, G) = (if v−−v/∈G ∨ ¬ isVal e then G⊥ae v e G|‘ fv e else (fv e)2)

lemma ccBinds_eq:
ccBinds Γ·i = (

⊔
v 7→e∈map_of Γ. ccBind v e·i)

lemma ccBindsExtra_eq: ccBindsExtra Γ·(ae,G) =
G t ccBinds Γ·(ae,G) t (

⊔
x 7→e∈map_of Γ. fv e G× ccNeighbors x G)

CoCallFix.thylemma CCfix_eq:
CCfix Γ·(ae,G) = (µ G ′. ccBindsExtra Γ·(ae, G ′) t G)

Finally, the actual transformation, which uses the arity analysis, is
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ArityTransform.thylemma transform_simps:
T a (App e x) = App (T inc·a e) x
T a (Lam [x]. e) = Lam [x]. T pred·a e
T a (Var x) = Var x
T a (Let Γ e) = Let (map_transform Aeta_expand (Aheap Γ e·a) (map_transform (λa.
T a) (Aheap Γ e·a) Γ)) (T a e)
T a (Bool b) = Bool b
T a (scrut ? e1 : e2) = (T 0 scrut ? T a e1 : T a e2)

where the auxiliary function map_transform applies a transformation of
type Arity⇒ exp⇒ to an Arity environment and a heap:

TransformTools.thylemma lift_transform_simps[simp]:
lift_transform t ⊥ e = e
lift_transform t (up·a) e = t a e

definition
map_transform :: ( ′a::cont_pt⇒ exp⇒ exp)⇒ (var⇒ ′a⊥)⇒ heap⇒ heap
where map_transform t ae = map_ran (λ x e . lift_transform t (ae x) e)

A.4.4 Call Arity theorems

The Call Arity transformation is functionally correct, i.e. does not change
the semantics (Theorem 4):

ArityAnalysisCorrDenotational.thycorollary Arity_transformation_correct ′:
[[ T 0 e ]]$ = [[ e ]]$

The main safety theorem for Call Arity (Theorem 5) reads as follows:

CallArityEnd2EndSafe.thytheorem end2end_closed:
assumes closed: fv e = ({} :: var set)
assumes ([], e, [])⇒∗ (Γ,v,[]) and isVal v
obtains Γ ′ and v ′

where ([], T 0 e, [])⇒∗ (Γ ′,v ′,[]) and isVal v ′

and card (domA Γ ′) ≤ card (domA Γ)





It’s like someone took a transcript of
a couple arguing at IKEA and made
random edits until it compiled
without errors.

Randall Munroe, xkcd #1513

APPENDIX B

Call Arity code
This appendix lists the actual implementation of Call Arity, as it is shipped
in GHC 7.10.3, which is also the version that I produced the benchmarks
in Section 3.5.3 with. I give the code without modifications besides
• the removal of comments and notes and
• whitespace-only changes to better fit the page format and to produce

nicer alignment.
The mild pretty-printing and code alignment is performed using lhs2Tex
[HL15].

B.1 Co-call graphs

module UnVarGraph
( UnVarSet
, emptyUnVarSet, mkUnVarSet, varEnvDom,
, unionUnVarSet, unionUnVarSets
, delUnVarSet
, elemUnVarSet, isEmptyUnVarSet
, UnVarGraph
, emptyUnVarGraph
, unionUnVarGraph, unionUnVarGraphs
, completeGraph, completeBipartiteGraph
, neighbors

http://xkcd.com/1513
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, delNode
) where

import Id
import VarEnv
import UniqFM
import Outputable
import Data.List
import Bag
import Unique

import qualified Data.IntSet as S

newtype UnVarSet = UnVarSet (S.IntSet)
deriving Eq

k :: Var→ Int
k v = getKey (getUnique v)

emptyUnVarSet :: UnVarSet
emptyUnVarSet = UnVarSet S.empty

elemUnVarSet :: Var→ UnVarSet→ Bool
elemUnVarSet v (UnVarSet s) = k v ‘S.member‘ s

isEmptyUnVarSet :: UnVarSet→ Bool
isEmptyUnVarSet (UnVarSet s) = S.null s

delUnVarSet :: UnVarSet→ Var→ UnVarSet
delUnVarSet (UnVarSet s) v = UnVarSet $ k v ‘S.delete‘ s

mkUnVarSet :: [Var ]→ UnVarSet
mkUnVarSet vs = UnVarSet $ S.fromList $ map k vs

varEnvDom :: VarEnv a→ UnVarSet
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varEnvDom ae = UnVarSet $ ufmToSet_Directly ae

unionUnVarSet :: UnVarSet→ UnVarSet→ UnVarSet
unionUnVarSet (UnVarSet set1) (UnVarSet set2)
= UnVarSet (set1 ‘S.union‘ set2)

unionUnVarSets :: [UnVarSet ]→ UnVarSet
unionUnVarSets = foldr unionUnVarSet emptyUnVarSet

instance Outputable UnVarSet where
ppr (UnVarSet s) = braces $
hcat $ punctuate comma [ppr (getUnique i) | i← S.toList s ]

data Gen = CBPG UnVarSet UnVarSet
| CG UnVarSet

newtype UnVarGraph = UnVarGraph (Bag Gen)

emptyUnVarGraph :: UnVarGraph
emptyUnVarGraph = UnVarGraph emptyBag

unionUnVarGraph :: UnVarGraph→ UnVarGraph→ UnVarGraph
unionUnVarGraph (UnVarGraph g1) (UnVarGraph g2)
= UnVarGraph (g1 ‘unionBags‘ g2)

unionUnVarGraphs :: [UnVarGraph ]→ UnVarGraph
unionUnVarGraphs = foldl’ unionUnVarGraph emptyUnVarGraph

completeBipartiteGraph :: UnVarSet→ UnVarSet→ UnVarGraph
completeBipartiteGraph s1 s2
= prune $ UnVarGraph $ unitBag $ CBPG s1 s2

completeGraph :: UnVarSet→ UnVarGraph
completeGraph s = prune $ UnVarGraph $ unitBag $ CG s

neighbors :: UnVarGraph→ Var→ UnVarSet
neighbors (UnVarGraph g) v
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= unionUnVarSets $ concatMap go $ bagToList g
where
go (CG s) = (if v ‘elemUnVarSet‘ s then [s ] else [ ])
go (CBPG s1 s2) = (if v ‘elemUnVarSet‘ s1 then [s2 ] else [ ]) ++

(if v ‘elemUnVarSet‘ s2 then [s1 ] else [ ])

delNode :: UnVarGraph→ Var→ UnVarGraph
delNode (UnVarGraph g) v = prune $ UnVarGraph $ mapBag go g
where
go (CG s) = CG (s ‘delUnVarSet‘ v)
go (CBPG s1 s2) = CBPG (s1 ‘delUnVarSet‘ v) (s2 ‘delUnVarSet‘ v)

prune :: UnVarGraph→ UnVarGraph
prune (UnVarGraph g) = UnVarGraph $ filterBag go g
where
go (CG s) = not (isEmptyUnVarSet s)
go (CBPG s1 s2) = not (isEmptyUnVarSet s1) &&

not (isEmptyUnVarSet s2)

instance Outputable Gen where
ppr (CG s) = ppr s<> char ′2′

ppr (CBPG s1 s2) = ppr s1< + > char ′x′ < + > ppr s2
instance Outputable UnVarGraph where
ppr (UnVarGraph g) = ppr g

B.2 The Call Arity analysis

module CallArity (callArityAnalProgram, callArityRHS) where

import VarSet
import VarEnv
import DynFlags (DynFlags)

import BasicTypes
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import CoreSyn
import Id
import CoreArity (typeArity)
import CoreUtils (exprIsHNF, exprIsTrivial)
import UnVarGraph
import Demand

import Control.Arrow (first, second)

callArityAnalProgram :: DynFlags→ CoreProgram→ CoreProgram
callArityAnalProgram _dflags binds = binds’
where
(_, binds’) = callArityTopLvl [ ] emptyVarSet binds

callArityTopLvl :: [Var ]→ VarSet→ [CoreBind ]→
(CallArityRes, [CoreBind ])

callArityTopLvl exported _ [ ]
= ( calledMultipleTimes $

(emptyUnVarGraph, mkVarEnv $ [ (v, 0) | v← exported ])
, [ ])

callArityTopLvl exported int1 (b : bs)
= (ae2, b’ : bs’)

where
int2 = bindersOf b
exported’ = filter isExportedId int2++ exported
int’ = int1 ‘addInterestingBinds‘ b
(ae1, bs’) = callArityTopLvl exported’ int’ bs
(ae2, b’) = callArityBind (boringBinds b) ae1 int1 b

callArityRHS :: CoreExpr→ CoreExpr
callArityRHS = snd . callArityAnal 0 emptyVarSet

callArityAnal :: Arity→ VarSet→ CoreExpr→ (CallArityRes, CoreExpr)

callArityAnal _ _ e@(Lit _)
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= (emptyArityRes, e)
callArityAnal _ _ e@(Type _)
= (emptyArityRes, e)

callArityAnal _ _ e@(Coercion _)
= (emptyArityRes, e)

callArityAnal arity int (Tick t e)
= second (Tick t) $ callArityAnal arity int e

callArityAnal arity int (Cast e co)
= second (λe→ Cast e co) $ callArityAnal arity int e

callArityAnal arity int e@(Var v)
| v ‘elemVarSet‘ int
= (unitArityRes v arity, e)
| otherwise
= (emptyArityRes, e)

callArityAnal arity int (Lam v e) | not (isId v)
= second (Lam v) $ callArityAnal arity (int ‘delVarSet‘ v) e

callArityAnal 0 int (Lam v e)
= (ae’, Lam v e’)
where
(ae, e’) = callArityAnal 0 (int ‘delVarSet‘ v) e
ae’ = calledMultipleTimes ae

callArityAnal arity int (Lam v e)
= (ae, Lam v e’)
where
(ae, e’) = callArityAnal (arity− 1) (int ‘delVarSet‘ v) e

callArityAnal arity int (App e (Type t))
= second (λe→ App e (Type t)) $ callArityAnal arity int e

callArityAnal arity int (App e1 e2)
= (final_ae, App e1’ e2’)
where
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(ae1, e1’) = callArityAnal (arity+ 1) int e1
(ae2, e2’) = callArityAnal 0 int e2

ae2’ | exprIsTrivial e2 = calledMultipleTimes ae2
| otherwise = ae2

final_ae = ae1 ‘both‘ ae2’

callArityAnal arity int (Case scrut bndr ty alts)
= (final_ae, Case scrut’ bndr ty alts’)
where
(alt_aes, alts’) = unzip $ map go alts
go (dc, bndrs, e) = let (ae, e’) = callArityAnal arity int e

in (ae, (dc, bndrs, e’))
alt_ae = lubRess alt_aes
(scrut_ae, scrut’) = callArityAnal 0 int scrut

final_ae = scrut_ae ‘both‘ alt_ae

callArityAnal arity int (Let bind e)
= (final_ae, Let bind’ e’)
where
int_body = int ‘addInterestingBinds‘ bind
(ae_body, e’) = callArityAnal arity int_body e
(final_ae, bind’) = callArityBind (boringBinds bind) ae_body int bind

isInteresting :: Var→ Bool
isInteresting v = 0 < length (typeArity (idType v))

interestingBinds :: CoreBind→ [Var ]
interestingBinds = filter isInteresting . bindersOf

boringBinds :: CoreBind→ VarSet
boringBinds = mkVarSet . filter (not . isInteresting) . bindersOf

addInterestingBinds :: VarSet→ CoreBind→ VarSet
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addInterestingBinds int bind
= int ‘delVarSetList‘ bindersOf bind

‘extendVarSetList‘ interestingBinds bind

callArityBind ::
VarSet→ CallArityRes→ VarSet→ CoreBind→
(CallArityRes, CoreBind)

callArityBind boring_vars ae_body int (NonRec v rhs)
| otherwise
= (final_ae, NonRec v’ rhs’)
where
is_thunk = not (exprIsHNF rhs)

boring = v ‘elemVarSet‘ boring_vars

(arity, called_once)
| boring = (0, False)
| otherwise = lookupCallArityRes ae_body v

safe_arity | called_once = arity
| is_thunk = 0
| otherwise = arity

trimmed_arity = trimArity v safe_arity

(ae_rhs, rhs’) = callArityAnal trimmed_arity int rhs

ae_rhs’ | called_once = ae_rhs
| safe_arity== 0 = ae_rhs
| otherwise = calledMultipleTimes ae_rhs

called_by_v = domRes ae_rhs’
called_with_v

| boring = domRes ae_body
| otherwise = calledWith ae_body v ‘delUnVarSet‘ v

final_ae
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= addCrossCoCalls called_by_v called_with_v
$ ae_rhs’ ‘lubRes‘ resDel v ae_body

v’ = v ‘setIdCallArity‘ trimmed_arity

callArityBind boring_vars ae_body int b@(Rec binds)
= (final_ae, Rec binds’)
where
any_boring = any (‘elemVarSet‘boring_vars) [ i | (i, _)← binds ]

int_body = int ‘addInterestingBinds‘ b
(ae_rhs, binds’) = fix initial_binds
final_ae = bindersOf b ‘resDelList‘ ae_rhs

initial_binds = [(i, Nothing, e) | (i, e)← binds ]

fix :: [ (Id, Maybe (Bool, Arity, CallArityRes), CoreExpr) ]→
(CallArityRes, [ (Id, CoreExpr) ])

fix ann_binds
| any_change
= fix ann_binds’
| otherwise
= (ae, map (λ(i, _, e)→ (i, e)) ann_binds’)

where
aes_old = [(i, ae) | (i, Just (_, _, ae), _)← ann_binds ]
ae = callArityRecEnv any_boring aes_old ae_body

rerun (i, mbLastRun, rhs)
| i ‘elemVarSet‘ int_body &&

not (i ‘elemUnVarSet‘ domRes ae)
= (False, (i, Nothing, rhs))

| Just (old_called_once, old_arity, _)← mbLastRun
, called_once== old_called_once
, new_arity== old_arity
= (False, (i, mbLastRun, rhs))
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| otherwise
= let is_thunk = not (exprIsHNF rhs)

safe_arity | is_thunk = 0
| otherwise = new_arity

trimmed_arity = trimArity i safe_arity

(ae_rhs, rhs’) = callArityAnal trimmed_arity
int_body rhs

ae_rhs’ | called_once = ae_rhs
| safe_arity== 0 = ae_rhs
| otherwise = calledMultipleTimes ae_rhs

in (True, (i ‘setIdCallArity‘ trimmed_arity,
Just (called_once, new_arity, ae_rhs’), rhs’))

where
(new_arity, called_once) | i ‘elemVarSet‘ boring_vars

= (0, False)
| otherwise
= lookupCallArityRes ae i

(changes, ann_binds’) = unzip $ map rerun ann_binds
any_change = or changes

callArityRecEnv ::
Bool→ [ (Var, CallArityRes) ]→ CallArityRes→ CallArityRes

callArityRecEnv any_boring ae_rhss ae_body
= ae_new
where
vars = map fst ae_rhss

ae_combined = lubRess (map snd ae_rhss) ‘lubRes‘ ae_body
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cross_calls
| any_boring = completeGraph (domRes ae_combined)
| length ae_rhss> 25 = completeGraph (domRes ae_combined)
| otherwise = unionUnVarGraphs $ map cross_call ae_rhss

cross_call (v, ae_rhs)
= completeBipartiteGraph called_by_v called_with_v
where
is_thunk = idCallArity v== 0

ae_before_v | is_thunk
= lubRess (map snd $ filter ((/ =v) . fst) ae_rhss)

‘lubRes‘ ae_body
| otherwise
= ae_combined

called_with_v
= unionUnVarSets $ map (calledWith ae_before_v) vars

called_by_v = domRes ae_rhs

ae_new = first (cross_calls‘unionUnVarGraph‘) ae_combined

trimArity :: Id→ Arity→ Arity
trimArity v a = minimum [a, max_arity_by_type, max_arity_by_strsig ]
where
max_arity_by_type = length (typeArity (idType v))
max_arity_by_strsig
| isBotRes result_info = length demands
| otherwise = a

(demands, result_info) = splitStrictSig (idStrictness v)

type CallArityRes = (UnVarGraph, VarEnv Arity)

emptyArityRes :: CallArityRes
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emptyArityRes = (emptyUnVarGraph, emptyVarEnv)

unitArityRes :: Var→ Arity→ CallArityRes
unitArityRes v arity = (emptyUnVarGraph, unitVarEnv v arity)

resDelList :: [Var ]→ CallArityRes→ CallArityRes
resDelList vs ae = foldr resDel ae vs

resDel :: Var→ CallArityRes→ CallArityRes
resDel v (g, ae) = (g ‘delNode‘ v, ae ‘delVarEnv‘ v)

domRes :: CallArityRes→ UnVarSet
domRes (_, ae) = varEnvDom ae

lookupCallArityRes :: CallArityRes→ Var→ (Arity, Bool)
lookupCallArityRes (g, ae) v
= case lookupVarEnv ae v of

Just a → (a, not (v ‘elemUnVarSet‘ (neighbors g v)))
Nothing→ (0, False)

calledWith :: CallArityRes→ Var→ UnVarSet
calledWith (g, _) v = neighbors g v

addCrossCoCalls :: UnVarSet→ UnVarSet→ CallArityRes→ CallArityRes
addCrossCoCalls set1 set2
= first (completeBipartiteGraph set1 set2‘unionUnVarGraph‘)

calledMultipleTimes :: CallArityRes→ CallArityRes
calledMultipleTimes res
= first (const (completeGraph (domRes res))) res

both :: CallArityRes→ CallArityRes→ CallArityRes
both r1 r2
= addCrossCoCalls (domRes r1) (domRes r2) $ r1 ‘lubRes‘ r2

lubRes :: CallArityRes→ CallArityRes→ CallArityRes
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lubRes (g1, ae1) (g2, ae2)
= (g1 ‘unionUnVarGraph‘ g2, ae1 ‘lubArityEnv‘ ae2)

lubArityEnv :: VarEnv Arity→ VarEnv Arity→ VarEnv Arity
lubArityEnv = plusVarEnv_C min

lubRess :: [CallArityRes ]→ CallArityRes
lubRess = foldl lubRes emptyArityRes
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