
More fixpoints, denotationally!

JOACHIM BREITNER, unaffiliated, Germany

This document contains unpublished and work-in-progress thoughts about a denotational description of the
language extension proposed in More fixpoints! (Functional Pearl) from ICFP 2023.

You are looking at the version from July 9, 2023.

1 INTRODUCTION
In the “More Fixpoints!” functional pearl, I extend a lazy pure language (Haskell) with the ability
to define recursive equations involving Sets and/or Booleans, and still produce a result. Since
the semantics of pure functional programming, and the semantics of solving such equations, can
both be elegantly expressed using fixpoints on partial orders, it seems prudent to search for a
denotational semantics that can describe this combination. In this document I note down some
some experiments in that direction.

Here is an executive summary of this text:
• We use small simply typed example language extended with recursively definable booleans

(Section 2.1), and give it a call-by-name denotational semantics (Section 2.3). Functions are
no longer continuous there, but still montone, and because the denotation is a fixed point,
equataional reasoning (Section 2.4) works well.

• There are reasons why simpler approaches (simpler domains, untyped semantics) do not
work (Section 2.6)

• The call-by-name semantics assigns non-bottom to programs that do not actually terminate.
We can fix that using a denotational semantics in the style of “Call-by-Need Is Clairvoyant
Call-by-Value” to only allow knot-tied recursion (Section 3). This semantics seems to ap-
propriately describe the behavior of our programs. It is more abstract than an operational
semantics, although we cannot deny that we would prefer even more elegance.

There is more work to be done. Questions you will not (yet) find the answer here are, among others:
• Does the call-by-need cost accounting order on �2 work as intended?
• Can we perform interesting proofs, and can we do it well?
• Can we prove the semantics correct and adequate with regard to a suitable operational

semantics?
• How abstract is the semantics (i.e. how does semantic equality and contextual equivalence

relate), and can we improve that?

2 DENOTATIONAL SEMANTICS
The most promising approach so far is to turn the introduction forms of our recursively defineable
data types into regular constructors, and move all magic into the get operation.

2.1 The language
As usual, we focus on a small core language to demonstrate our ideas. For our purposes, let us used
a simply typed lambda calculus with recursive bindings, extended with the conventional Bool data
type and our RBool:

In this section we start with a lambda calculus in ANF with recursive let expressions

g ∈ TypF g → g | Bool | RBool

Author’s address: Joachim Breitner, mail@joachim-breitner.de, unaffiliated, Germany.

HTTPS://ORCID.ORG/0000-0003-3753-6821
https://joachim-breitner.de/publications/rec-def-pearl.pdf
https://orcid.org/0000-0003-3753-6821

2 Joachim Breitner

G ∈ Var
4 ∈ ExpF G | (λG .4) | 4 G | letG = 4 in 4

| True | False | if 4 then 4 else 4
| mk | get | and | or

The types of the operations on Bool and RBool are

mk :: Bool → RBool

get :: RBool → Bool

and, or :: RBool → RBool → RBool

and the typing relation Γ ` 4 : g is standard.

2.2 The denotational domain
By virtue of using a simply typed language, we can choose a suitable denotational domain for each
type. This avoids having to solve recursive domain equations involving the function type (as in the
untyped case), which we struggle with (see Sec. TODO).

The semantic domain for a type g is a DCPO D(g), which is either bottom or a value V(g):

D(g) = V(g)⊥
V(g1 → g2) = [V(g1)⊥ →< D(g2)]

V(Bool) = B
V(RBool) = F

where F = B⊥ + (F⊥ × F⊥) + (F⊥ × F⊥)

Some notes:
(1) To stay close to lazy functional programming, every type is lifted. In particular, ⊥ @ (_G.⊥).
(2) The function type contains all monotonic functions (hence the< at the arrow), and not just

the continuous, as usual. We’ll soon see why we need this. I write 5 or (_E.5 (E)) for the
elements in this domain.
It remains to be seen if this causes problems, and whether we can find a tighter model for
the function space.

(3) The booleans are just B = {f, t}, discretely ordered. I write 1 for an arbitrary element of B.
(4) The denotation of RBool is F , the (possibly infinite) formulas built from Mk(3), And(3, 3)

and Or(3, 3).
(5) For some examples, it’s useful to talk about an unary identity operation

id :: RBool → RBool

with denotation Id(3). Think of id 4 = and G G resp. Id(3) = And(3, 3).

2.3 The denotation of expressions
Finally we can give the denotation of (well-typed) expressions: For every typing derivation Γ ` 4 : g
and well-typed environment d ∈ ΠG∈VarD(Γ(G)) we can deifne the dentotation È4Éd ∈ D(g). The
equations for the lambda calculus fragment, the booleans, and the RBool constructors are standard:

ÈGÉd = d (G)
ÈλG .4Éd = _E.È4Édt{G ↦→E}

More fixpoints, denotationally! 3

È4 GÉd =

{
5 (d (G)) if È4Éd = _E.5 (E)
⊥ else

ÈletG = 41 in 42Éd = È42Édt{G ↦→lfpℎ} where ℎ(3) = È41Édt {G ↦→3 }

ÈTrueÉd = t

ÈFalseÉd = f

Èif 41 then 42 else 43Éd =

È42Éd if È41Éd = t

È43Éd if È41Éd = f

⊥ else
ÈmkÉd = _E.Mk(E)
ÈandÉd = _E1E2.And(E1, E2)
ÈorÉd = _E1E2.Or(E1, E2)

Here we can see that and and or are lazy and thus can be used to tie the knot, as described in
the paper.

Because we allow monotonic (not continuous) functions in D(g1 → g2), the semantics itself
is monotonic (not continuous) in the environmet d . This means the least fixed-point lfpℎ in the
semantics for let still exists, but may not necessarily be

⊔
8 ℎ

8 (⊥).
All the magic is now in the semantics for get, which collects the formula constructed from Mk,

And and Or, solves it in the two-point lattice ℬ = {-,�} with � @ - (and operations ∧ and ∨),
and returns the result as a B.

More precisely, it uses a helper function

interp :: F⊥ → ℬ
>

which is the smallest function that solves the equations

interp(Mk(1)) = 8 (1) where 8 (t) = -

8 (f) = �

8 (⊥) = >
interp(And(31, 32)) = interp(31) ∧ interp(32) if interp(31), interp(32) ≠ >
interp(Or(31, 32)) = interp(31) ∨ interp(32) if interp(31), interp(32) ≠ >

interp(3) = > for any other 3

Some observations about interp:
• The > value serves as an error indicator, when a the formula cannot be interpreted – here,

if any value is unknown (⊥); but later we will see that it can be used to model when solving
the equations does not terminate.

• This function is not monotonic from F⊥ to ℬ
>, because 8 : B⊥ → ℬ

> isn’t.
• Its definitional equations are monotonic in the recursive calls, so if you think of it as

an infinite system of equations, indexed by the elements of F , the definition becomes
well-defined even for infinite formulas. For example

interp(`3.And(3, 3)) = �.

• We can only have interp(3) ≠ > if 3 consist only of constructors, and in particular no ⊥
occurs anywhere therein. Such a 3 is a maximal element of F ; there exists no strictly larger
element.

4 Joachim Breitner

With that we can define

ÈgetÉd = _E.4 (interp(E)) where 4 (�) = f

4 (-) = t

4 (>) = ⊥
More observations:

• Again, the mapping 4 : : ℬ> → B⊥ therein is not monotonic.
• But – crucially – the the composition of 4 and interp, and thus the denotation of get, is

monotonic:
Assume E1 @ E2. So E1 is not a maximal element, therefore interp(E1) = >, hence ÈgetÉ E1 =

⊥, which suffices for ÈgetÉ E1 v ÈgetÉ E2.
• The function is not continuous: Consider the sequence 38 = Id8 (⊥) ∈ F . It forms a chain

⊥ @ Id(⊥) @ Id(Id(⊥)) @ · · ·
with limit 3l = (`3. Id(3)). We have

Èget GÉ 38 = ⊥
for all 8 , but

Èget GÉ 3l = f .

because interp(3l) = �.
We still get a well-defined semantics È·É; see the comment above about the existence of the
least fixed point in the let semantics.

• This semantics is more defined that what we can implement, because interp works even in
cases where we did not tie the knot. So we not only get

ÈletG = id G in get GÉ = f

as we expect, but also

ÈletG = (λ~.id (G ~)) in get (G ~)É = f

which is not what we see in the implementation.
The problem is that our semantics is call-by-name, not call-by-need, so we cannot distinguish
the productive tied knot from the other expression.
This can be fixed by elaborating the semantics along the lines of “Call-by-Need Is Clairvoyant
Call-by-Value” and forcing ÈgetÉ 3 = ⊥ if 3 isn’t knot-tied. (I have TODO that in another
section below.)
It seems that that semantics will simply be less defined than this one, but agree when they
are both not bottom, so the call-by-name semantics may already useful for fast-and-lose
reasoning.

2.4 Equational reasoning
Now that we have defined the semantics, can we use it?

2.4.1 Some things work. It seems we can do some amount of equational reasoning. Equations
related to the lambda calculus like

È(λG .4 [G]) ~É = È4 [~]É
hold as usual.

Moreover, we can derive program equations like

Èget (and G ~)É = È(get G)&&!(get ~)É

More fixpoints, denotationally! 5

where &&! a strict conjunction operator on B⊥:
If interp(d (G)) = > or interp(d (~)) = >, then both sides are ⊥. Else we can can calculate (using

∧ both on ℬ and B)

Èget (and G ~)Éd = ÈgetÉ Èand G ~Éd
= 4 (interp(and(d (G), d (~))))
= 4 (interp(d (G)) ∧ interp(d (~)))
= 4 (interp(d (G))) ∧ 4 (interp(d (~)))
= ÈgetÉ d (G) ∧ ÈgetÉ d (~)
= Èget GÉd ∧ Èget ~Éd
= È(get G)&&!(get ~)Éd

Since all moving parts are defined as fixed-points of one sort or another, equational reasoning
works very well.

2.4.2 Some things do not work. Unfortunately, dome desirable identities like the following do not
seem to hold

Èand G ~É = Èand ~ GÉ
Èor G GÉ = Èid GÉ

because the denotation � captures the full boolean formula, and not some denotation thereof, only
to be interpreted by interp.

Can this be solved? Can we somehow inline the effect of interp into the denotational of and,
without breaking the well-definedness of the semantics?

2.5 Other domains
The above isn’t very specific to the boolean domain ℬ, and should work without much changes for
other domains � such as P(N) or Pfin (N): All operations are modelled as constructors in � , and
then interp interprets these formulas in �>.

This even does the right thing for non-complete domains such as Pfin (N): By adjoining the >,
and letting all operations map > to >, a program like

let x = RS.insert 0 (RS.map (+1) x) in x

will be solved as > by interp and thus end up being ⊥, as it should.
If we want to model RMap a b, where values from � are stored, but not looked at by interp, the

argument for why ÈgetÉ is continuous is more involved, as we cannot simply argue via maximality,
but may need some kind of parametricity argument.

2.6 Why not…
Let’s briefly look at other attempts and variants, and where they failed.

2.6.1 A simpler domain. One might expect to be able to simply use the two-point latticeℬ directly
as the domain for RBool, instead of keeping the formulas F around until we get them:

D(RBool) = V(RBool)⊥
V(RBool) = ℬ

6 Joachim Breitner

ÈmkÉ = _E.

� if E = f

- if E = t

⊥ if E = ⊥

ÈgetÉ = _E.

f if E = �

t if E = -

⊥ if E = ⊥

ÈandÉ = _E1E2.

{
E1 ∧ E2 if E1, E2 ≠ ⊥
⊥ else

However, now the denotation of expressions is not monotonic,

� v - but Èget GÉ{G ↦→�} = f @ t = Èget GÉ{G ↦→-},

and the whole semantics is no longer well-defined – hence the need for something more elaborate.

2.6.2 An untyped domain. Often, denotational semantics are presented in an untyped way, with a
single Domain � for all expressions, and operations failing (returning ⊥) when used in an ill-typed
way.

To do so in our case, we would start describe the domain � via a recursive domain equations,
maybe like this:

� = ([� →< �] + B + F)⊥
where F = � + (� × �) + (� × �).

We’d now have to solve that domain equation, and prove that a CPO satisfying that equation
actually exists. For the usual constructions, including the space of continuous functions, this is
a well-known theorem. Our semantics, for better or worse, has to allow certain non-continuous
functions to model the semantics for get. And once the domain equation recurses through →< , it
is no longer generally the case that the domain equation has a solution.

We side-step the issue by focusing on the simply typed fragment, where we can assemble the
semantic domain in a type-syntax driven way, without the need to recurse through →< .

3 TYING THE KNOTWITH LAZY EVALUATION
As mentioned above, our denotational semantics is too permissive: It assignes non-bottom meaning
to programs we do not expect to run. This is because we only expect to handle those (infinite)
formulas that arise from finite graphs in the heap, i.e. a tied knot, when evaluated lazily, but not
others.

A denotational semantics that captures needs to be able to observe sharing; it must be a call-
by-need semantics. How abstract can we be, while still capturing that difference? Can we still
avoid talking about heaps and graphs? It seems we can, building on “Call-by-Need Is Clairvoyant
Call-by-Value” by Hacket and Hutton.

Their goal was to find a semantics (operational and denotational) that captures the cost of
evaluation in lazy evaluation, for example to prove improvement of program transformations. This
is a bit more detail than we need, but, as a side-effect so to say, it allows us to recognize tied knots.

3.1 Cost counting domains
To apply their approach, we have to replace �⊥ in our semantics domains with the more expressive

�2 B (lop × �)⊥

More fixpoints, denotationally! 7

where lop is the set of natural numbers in reverse order (· · · @ 2 @ 1 @ 0). The intuition is that
such a value can either denote something non-terminating (⊥) or a value ((=, E)) that remembers
that it takes = steps to obtain that value. The reverse ordering on the costs means

⊥ @ · · · @ (2, E) @ (1, E) @ (0, E)

and the usual “more defined” becomes “more defined or cheaper to calculate”, which matches the
intuition that ⊥ takes an infinite number of steps.

According to an errata1, the following order should be used on lop × � :

(:, 5) v (: ′, 5 ′) ⇐⇒ : ≥ : ′ ∧ ∀E, : I 5 (E) v : ′ I 5 ′ (E)

which supposedly leads to

(:1, 51) t (:2, 52) = (: ′, λE .(:1 − : ′) I 51 (E) t (:2 − : ′) I 52 (E)) where : ′ = min(:, : ′)

We need to extend this to data types, it seems. I am not yet sure what happens for binary ones, but
for unary constructors like id I think this means we get

(:1, id(31)) t (:2, id(32)) = (: ′, id((:1 − : ′) I 31 t (:2 − : ′) I 32)) where : ′ = min(:, : ′)

The operation = I · adds a cost of = steps; we liberally use this operation at type �⊥ → �2 to
add a cost annotation,

= I 3 = (=,3),

and at type �2 → �2 to increase the cost,

= I (<,3) = (= +<,3).

A value 3 ∈ � can be considered a value of �2 as (0, 3). Thus in all cases, we have

= I ⊥ = ⊥
0 I 3 = 3.

Furthermore, for = ≠ 0, = I 3 = 3 holds only for 3 = ⊥. The operation c2 (⊥) = ⊥, c2 ((2, E)) = E

extracts the underlying value, throwing away the cost annotation.

3.2 Semantics of types
Our new semantic domains now become

D(g) = (lop ×V(g))2
V(g1 → g2) = [V(g1)⊥ →< D(g2)]

V(Bool) = B
V(RBool) = F

where F = B2 + (F2 × F2) + (F2 × F2)

Note that the domain for function types is [V(g1)⊥ →< D(g2)], so function arguments do not
carry a cost; they are either bottom or already a value.

1https://www.cs.nott.ac.uk//~pszjlh/cbncbv erratum.pdf

https://www.cs.nott.ac.uk//~pszjlh/cbncbv_erratum.pdf

8 Joachim Breitner

3.3 Semantics of expressions
We now have to add cost counting to our semantics function. The environment does not include
costs d ∈ ΠG∈VarV(Γ(G))⊥; the cost of a lazy binding, if it is going to be used, is accounted for at
binding time.

But how is that possible, when under the call-by-need strategy a lazy binding becomes an
unevaluated thunk first, and the first evaluation statefully updates it? This is solved by the titular
clairvoyance: The denotation of let x = e1 in e2 considers the semantics of both cases; one where
e1 is evaluated (and immediatelly accounted for), and one where it is simply dropped. Taking the
better of the two denotations (t) elegantly does the right thing.

It will simplify our live considerably to only allow expressions in A-normal form (ANF), and
expect the argument in an function application to always be a variable. This way, only the let

construct deals with bindings:

ÈGÉd = 1 I d (G)
ÈλG .4Éd = _E.È4Édt{G ↦→E}

È4 GÉd =

{
(1 + =) I 5 (d (G)) if È4Éd = = I (_E.5 (E))
⊥ else

ÈletG = 41 in 42Éd = (1 I È42Édt{G ↦→⊥}) t{
(1 + =) I È42Édt{G ↦→E} if lfpℎ = (=, E)
⊥ else

where ℎ(3) = È41Édt {G ↦→c2 (3) }

ÈTrueÉd = t

ÈFalseÉd = f

Èif 41 then 42 else 43Éd =

(1 + =) I È42Éd if È41Éd = = I t

(1 + =) I È43Éd if È41Éd = = I f

⊥ else
ÈmkÉd = _E.Mk(E)
ÈandÉd = _E1E2.And(E1, E2)
ÈorÉd = _E1E2.Or(E1, E2)

We see that value forms do not incurs a cost, while all other constructs bump the cost by
one. Furthermore, the costs of (strictly evaluated) subexpressions, like function left-hand-sides or
scrutinees, are propagated.

The most interesting equation is the one for let: the denotation is the better (t) of two possible
worlds: One where G is simply unused, so no cost is incurred and its value is ⊥, and one where G
will (eventually) be evaluated. In that case, the evaluation of 41 better terminate. We are finding a
least fixed point, as the meaning of 42 may depend on the value of G . We even allow 42 to access its
own value without additional cost (c2 (3)) – this is the essence of sharing. But it must be the case
that 42 is lazy in G for this fixedpoint to reach a non-bottom result: If ℎ(⊥) = È41Édt {G ↦→⊥} = ⊥,
then lfpℎ = ⊥.

More fixpoints, denotationally! 9

In the examples below we do not always want to write functions in ANF. If we understand 41 42
with non-trivial argument as a short hand for letG = 42 in 41 G with fresh G , we find

È41 42Éd = ÈletG = 42 in 41Éd

= (1 I È41 GÉdt{G ↦→⊥}) t
{
(1 + =2) I È41 GÉdt{G ↦→E} if È41Éd = (=2, E)
⊥ else

= (2 + =1 I 5 (⊥)) t
{
(2 + =1 + =2) I 5 (E) if È41Éd = (=2, E)
⊥ else

= 2 + =1 I
{
5 (⊥) t =2 I 5 (E) if È41Éd = (=2, E)
5 (⊥) else

where È41Éd = =1 I (_E.5 (E))

3.4 Recognizing cyclic data structures
With this semantics, we can now distinguish knot-tied, cyclic data structure from other kinds of
recursion. For example, we can distinguish ÈletG = id G inGÉ from ÈletG = (λ~.id (G ~)) inG ~É:

In the first case, we have

ℎ(3) = Èid GÉdtG ↦→c2 (3) = 2 I Id(c2 (3))

so iterating ℎ yields
⊥ @ 1 I Id(⊥) @ 1 I Id(0 I Id(⊥)) @ ·

with limit 1 I Id(`3, 0 I Id(3)), so alltogether

ÈletG = id G inGÉ = 3 I Id(`3.0 I Id(3)) .

We see that the knot-tied data structure, after some finite outer cost, becomes an infinite tree with
all costs 0. In other words: It takes a finite amount of steps to fully evaluate the (infinite) formula.

For the second expression, where no knot is tied, we have

ℎ(3) = Èλ~.id (G ~)Édt{G ↦→c2 (3) }

= λE .1 I Èid (G ~)Édt{G ↦→c2 (3),~ ↦→E}

= λE .1 I Èid (G ~)Édt{G ↦→c2 (3),~ ↦→E}

= λE .3 I

{
Id(⊥) t =2 I Id(E ′) if ÈG ~Édt{G ↦→c2 (3),~ ↦→E} = (=2, E ′)
Id(⊥) else

= λE .3 I Id

({
(1 + =2) I E ′ if c2 (3) = 5 and 5 (E) = (=2, E ′)
⊥ else

)
so

ℎ(⊥) = λE .3 I Id(⊥)
ℎ(ℎ(⊥)) = λE .3 I (Id(4 I Id(⊥)))

ℎ(ℎ(ℎ(⊥))) = λE .3 I (Id(4 I Id(4 I Id(⊥))))
lfpℎ = λE .3 I (Id(`3.4 I Id(3)))

and we see that evaluating the whole forumula is not possible with finite cost.

10 Joachim Breitner

3.5 An implementable get
This leads us to the right intution for the denotation of get: It can only return a non-bottom result
if fully evaluating the formula is possible with a finite cost. Therefore, we make it add up all the
costs involved. The function cost is the smallest function satisfying

cost :: F2 → l>

cost(= I Mk(3)) = =

cost(= I And(31, 32)) = = + cost(31) + cost(32)
cost(= I Or(31, 32)) = = + cost(31) + cost(32)

cost(⊥) = >
We have cost3 @ > only if 3 is a (possibly infinite) formula with no ⊥ anywhere and finite cost
annotations. In particular

cost(`E, 0 I Id(E)) = 0 and cost(`E, 1 I Id(E)) = ⊥.
And finally the get operation now report this cost and, crucially, return ⊥ if the cost is not finite:

ÈgetÉd = _E.

{
= I 4 (interp(E)) if cost(E) = =

⊥ if cost(E) = >
Here, interp is like before, simply ignoring the cost annotations.

Is this still monotonic? Like before, the result non-bottom only if the argument is finite, free of
bottoms and with finite total costs. A larger argument can thus only differ in the cost annotations,
and have smaller numbers, which means the result of get will have a smaller cost number, which
means it is larger, and all is well.

	Abstract
	1 Introduction
	2 Denotational semantics
	2.1 The language
	2.2 The denotational domain
	2.3 The denotation of expressions
	2.4 Equational reasoning
	2.5 Other domains
	2.6 Why not…

	3 Tying the knot with lazy evaluation
	3.1 Cost counting domains
	3.2 Semantics of types
	3.3 Semantics of expressions
	3.4 Recognizing cyclic data structures
	3.5 An implementable get

