
Demo: Kaleidogen
Joachim Breitner
DFINITY Foundation

Germany
joachim@dfinity.org

Abstract
Kaleidogen lets you breed abstract circular patterns. You can
crossbreed two and add their offspring to your stock. The
game has no end, no score, no time pressure, the only goal
is to please your personal sense of aesthetics.

The mechanisms behind Kaleidogen imitate genetic inher-
itance. It is written in Haskell, compiled to JavaScript, runs
in the browser and generates GL shader programs on the fly.

CCS Concepts • Software and its engineering→ Func-
tional languages; • Applied computing → Computer
games;Media arts.

Keywords Haskell, generative art

ACM Reference Format:
Joachim Breitner. 2019. Demo: Kaleidogen. In Proceedings of the
7th ACM SIGPLAN International Workshop on Functional Art, Music,
Modeling, and Design (FARM ’19), August 23, 2019, Berlin, Germany.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3331543.
3342581

1 Inception
After a day of intensive mental work, your brain is still
running at full speed. What kind of computer game would
help you to gracefully calm down? It’s not so obvious: If the
game is too simple or passive, then your brain might still
wander off and continue to think about work. A fast-paced
intensive game however, like a shooter, would capture your
attention, but will likely be more stressful than relaxing. Can
a game be captivating and relaxing at the same time?
These considerations were at the beginning of a process

that led to Kaleidogen, a small game that may not yet fit the
bill, but still turned out to be rather nice.

2 User Experience
When you open http://kaleidogen.nomeata.de/, you will see
a screen as in Figure 1. The bottom row is your current

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
FARM ’19, August 23, 2019, Berlin, Germany
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6811-7/19/08.
https://doi.org/10.1145/3331543.3342581

Figure 1. Kaleidogen’s initial screen

population of patterns. If you select two, either by clicking
on two, or by dragging one on top of another, the patterns
will be crossbred, i.e. mixed, and their offspring is shown
on top. If you like what you see, you can add it to your
population, and use it to breed further, more complicated
patterns.

When you crossbreed two patterns, the new pattern might
inherit the colors of one or both parents, or aspects of the
shape of the parents. Sometimes an aspect is dropped, and
sometimes a completely new element is added. The process
is mostly unpredictable, and you cannot breed a specific
pattern in a targeted way; this is intentional. Every new
breed should be partly plausible and partly surprising. After

https://doi.org/10.1145/3331543.3342581
https://doi.org/10.1145/3331543.3342581
http://kaleidogen.nomeata.de/
https://doi.org/10.1145/3331543.3342581


FARM ’19, August 23, 2019, Berlin, Germany Joachim Breitner

Figure 2. After a few steps

a few steps, the patterns become more intricate and more
interesting, as you can see in Figure 2.
You can also remove patterns from your population, and

save individual patterns as images. That is all there is: the
game has no end (as your population grows, the circles be-
come smaller to fit the screen), no score, no winning con-
dition. You cannot even save the state of the game: your
creations are ephemeral.

3 Under the Hood
Despite this simplicity, there are a few interesting things
happening under the hood.

3.1 Pattern Genetics
The goal is that newly generated patterns are plausible de-
scendants of their parents, also but unpredictable (and hence
pleasantly surprising). To that end, each pattern is repre-
sented by sequence of bytes, which is suggestively called the
DNA. For example, the pattern in Figure 2 is represented by
0x812B73A74D1C4D874E. These genomes can be rendered as
a pattern, or crossbred to form a new one:

data RNA
= Solid (RGB Double)
| Rotate Double RNA
| Invert RNA
| Swirl Double RNA
| Dilated Int RNA
| Blend Double RNA RNA
| Checker Double RNA RNA
| Rays Int RNA RNA
| Gradient RNA RNA
| Ontop Double RNA RNA

Figure 3. Pattern expressions

3.1.1 Gene Expression
When interpreting the DNA as a pattern, it is turned into
an expression tree, suggestively called the RNA: The leaves
are circles filled with a plain color, and the nodes are (unary)
transformations or binary compositions of patterns. Figure 3
describes the possible operations as a Haskell data type.

It turned out that too much uncontrolled variation of color
is a problem, therefore color is encoded in the DNA sepa-
rately from the shape. The first two bytes simply select two
of the six initial base colors, which were chosen manually.
From each base color, a seven shades (unmodified, darker,
brighter, more intense, less intense, hue shifted by ±20°) are
created, shuffled, interleaved, and cycled to form an infinite
list. This list is used for the leaves of the RNA tree.

The remaining bytes encode this tree: The first 4 bits select
one of the 16 operations in Figure 3. Some operation have
a parameter, such as the size of the squares, or the angle
of rotation; the next 4 bits are used for that. For the unary
operations, all following bytes are parsed as the subexpres-
sion; for the binary operations, the remaining bytes are first
evently split into two sublists. When no bytes are left, we
have reached a leaf of the tree, and take the next shade from
the list of colors.
One nice effect of this encoding is that the trees tend to

be relatively balanced.

3.1.2 Crossbreeding
To crossbreed two patterns, we again treat the first two color-
encoding bytes differently: From each parent, we randomly
pick one color. This ensures that offspring does not suddenly
have base colors that were not present before, which turned
out to be too surprising.
The remaining bytes from each parent are concatenated,

and mutated as follows: With probability p = min(1, e−
l−2
20 ),

where l is the number of bytes in the concatenation, we add
a fresh random byte to the beginning, and remove each byte
in the list with probability (1 − p). This way patterns grow
quickly initially, but not without bound.



Demo: Kaleidogen FARM ’19, August 23, 2019, Berlin, Germany

We seed the random number generator with the two input
DNAs; this turns this “random” process into a deterministic
process, and prevents the user from cross-breeding the same
two patterns over and over.

3.1.3 Abstraction Mismatch
Observe that cross-breeding operates on the raw bytes, and
not on the expression trees. This mismatch of abstraction
is intentional: This way, the tree may be broken up and
re-assembled differently. Nevertheless, the algorithms are
co-designed. For example, by adding new random bytes to
the beginning of the list of bytes, the new operation will be
the root of the tree and hence very visible.
Coming up with these algorithms is an art, not a science.

In no sense are they finished or optimal, and we tweak the
continuously.

3.2 Technology Stack
Figure 3 already gives it away: Kaleidogen is implemented
in Haskell. To make it usable as a web application, we com-
pile it to JavaScript using ghcjs. The user interface itself is
essentially one big HTML Canvas that we draw on.
It was quickly clear that actually generating the pictures

pixel by pixel in Haskell is going to be far too slow. Therefore,
the Haskell code renders a pattern of type RNA not directly,
but generates a GL shader program from it – a task where
Haskell excells at. The whole user interface is rendered us-
ing WebGL. Despite drawing each pattern completely anew
in each frame, the user interface is snappy on a Desktop
browser. On mobile devices it becomes sluggish with many
patterns, and further profiling and performance turning is
necessary.

We can cross-build and package Kaleidogen as an app for
Android using the infrastructure from reflex-dom, jsaddle
and Nix: It still uses the web view for the UI, but the actual
code runs naively (and thus more performing).

Building almost exclusively on GL made it very simple to
also build Kaleidogen as a native Desktop application, using
the SDL library, for more direct access to the graphics system.
We hope to use this back-end also for the Android app, but
are currently facing problems cross-building Haskell SDL
applications.

3.3 User Interface
An earlier version of Kaleidogen used functional reactive
programming (FRP), using the proven reflex-dom library,

to model the user interface. We found that this was great as
long as the state of the UI is mostly derived from the abstract,
logical state of the game, but it turned out to be problematic
once we added animations and drag-n-drop interactions:
Now the state of the UI is heavily dependent not only on the
current state of game, or the recent states of the game, but
also on why the game changed its state – for example, did
the user abort the drag operation, or did they complete it,
but created a pattern that was already there, which we want
to animate differently?

Therefore, the code is now a layer of state machines where
state transitions not only define a new state, but also an ab-
stract notion of how to get from the old state to the new
one, which is interpreted by the outer layer. The inner state
machine deals with abstract positions for patterns (the sin-
gle “big one” and multiple, indexed “small ones”), the next
one turns these positions into actual coordinates, taking the
window size into account, animating the changes if neces-
sary. The last layer implements mouse interaction including
dragging; this isolates the lower layers from the temporary
displacement of a circle during dragging, and the animation
when the circle moves back when dragging ends.

Now that we have found a factoring of concerns that
works, it might be possible to express this design again using
FRP abstractions, for additional robustness; this is ongoing
work.

4 Conclusion
Kaleidogen is an interesting experiment on many layers:
Is it a good game? How to make the user interface intu-
itive and pleasant to use? Which colors and patterns to use,
and how to best combine them? How to build a performing
cross-platform app using Haskell? How to structure the pro-
gram architecture to disentangle abstract logic, UI layout,
animation and interaction? We hope that our ideas can be
an inspiration, and at the same time we are looking forward
to your input1.

Acknowledgments
I would like to thank Christina Zeller, Rebecca Schwerdt and
Juliane Jastram for playtesting and valuable input, especially
concerning the arcane art of picking colors that go well
together.

1or even contributions at https://github.com/nomeata/kaleidogen

https://github.com/nomeata/kaleidogen

	Abstract
	1 Inception
	2 User Experience
	3 Under the Hood
	3.1 Pattern Genetics
	3.2 Technology Stack
	3.3 User Interface

	4 Conclusion
	Acknowledgments

