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ABSTRACT
Bringing the joy and excitement of interactive theorem
provers to high school students is a challenge, because having
to learn the rules of the syntax, and manually checking hand-
written proofs is just not fun. Thus I created the Incredible
Proof Machine, which allows students to conduct proofs by
dragging blocks and wiring up them up to “proof graphs”, all
using just the mouse. The result is a surprisingly addictive
game-like experience that lures students (and non-students)
to prove statements of propositional and predicate logic; or
any other natural-deduction based calculus their instructor
wants to teach. In this talk, I will explain the motivation
behind the Proof Machine and its design decisions, demon-
strate the user interface and its various features, show how
to define your own tasks and even logics and outline the
correspondence between these proof graphs and conventional
natural deduction derivation trees.

Preamble
This paper is a transcript of the talk (as planned) given at the
LFMTP workshop in Porto. It is necessarily incomplete, as
during the talk, I made use of the blackboard, did live-coding
and live demonstrations of the program, but it can still convey
the message to some extent. It obviously also differs from
the talk (as held).

Italics in the following text indicate “stage directions”.

1. INTRODUCTION
Thank you for the introduction, and for the invitation to

speak here. I am very flattered that what started as a one-
shot project turned into something academically noteworthy.

Shortly, I will show you the Incredible Proof Machine,
which is a visual theorem prover, first from the user’s per-
spective, then from the point of view of an educator who
wants to employ the Proof Machine in his courses, and fi-
nally I’ll discuss some aspects of the implementation and
theoretical results.
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But first, I’d like to tell why I created the Proof Machine
in the first place, and why it looks the way it looks.

2. HISTORY
Last October, I had the opportunity to hold a weekend-long

workshop for highschool students. These students received
a scholarship for promising students with migration back-
ground1, and I could assume an above-average interest in
science; mathematics and computer science in particular.

I was free to choose the topic of my workshop, and I
wanted to let them know about the joy of performing proofs,
in particular formal, rigorous proofs.

Now, doing that on paper is not much fun until you are
quite sure of the rules of the game. Until then, the students
would have suffer from the demotivation of having to show
their experiments to someone and being told that they are
wrong.

It is much less daunting if they could use an theorem
prover, where they can explore things and get immediate
feedback. I am sure you would not be here if you would not
agree that interactive theorem proving is fun, addictive and
the world’s geekiest computer game2. I have myself learned
about this somewhat late in my studies in Karlsruhe, and
have been doing plenty of theorem proving since then; mostly
using Isabelle, but also Agda and Coq.

Wouldn’t it be great if like-minded students could start
much earlier?

But obviously, there is little point in just telling them:
“Here, install Isabelle and have fun!”. They would get com-
pletely lost in the syntax of Isar, in the syntax of HOL, in
the proof methods. Remember, these students have no prior
knowledge of logic, or serious proving, and even parsing a
term is a challenge. All in all, this would fare no better
than making them do logic on paper, and is certainly not an
option for a one-weekend voluntary workshop.

3. DESIGN
So I set out to create an interactive theorem prover that

would allow them, without any prior knowledge of the syntax
and the rules of logic, to do their first, simple, but real and
rigorous proofs – if only by accident!

I stepped back from the proof representations that we
usually use, such as natural language proofs (a literary genre

1https://www.start-stiftung.de/stipendium.html
2By the way, I am still searching for the original source of
that quote.
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of it own) or proof trees (quite rigid) and thought about the
– or, let me say, my – mental picture of a proof.

To me, when I prove something, I have some facts that I
believe or assume to be true, such as assumptions or axioms.
They are floating around somewhere here. Draws two rectan-
gles on the left. And then there are propositions that I want
to prove. Quite similar, but they are maybe around here. . .
Draws two rectangles on the right.

And now I need to make a connection here, and when I say
connection, I mean that quite literally. For example, if what
I want to prove is among the assumptions, I can connect
them and I am done. Draws a line from a rectangle on the
left to a rectangle on the right.

But more likely, the proof needs to perform a step or two.
Say, this block says “if it rains, then the street is wet”, which
we use as an axiom (Draws rain, arrow, water) and this block
says “it rains”, which shall be an assumption in our proof
(Draws rain). If I now want to proof that the street is wet
(Draws water on the right) I need to perform some proof
rule.

Now the rule that we need to use here is “modus ponens”,
also known as the elimination rule for implication. What
is my mental picture of that? Well, it is a box with two
connections, one for the implication and one for the premise,
and another one, in the other direction, for the conclusion.
I can now wire these up with my assumptions and my goal,
and the proof is done.

If we look at this picture, it reminds us a bit of a flow
chart, with a flow going strictly from left to right. And what
flows through these lines? Truth! Or at least assumed truth,
since there are assumptions on the left. Under this analogy,
what is a box like this? We can think of it as a little factory
or machine that produces new truths (in this case, that the
street is wet), and this machine needs ingredients to build
this truth (in this case, the implication and that it rains).

And this brings us to my variations on Wadler’s famous
slogan:

Propositions as conveyor belts,
Proof rules as machines,

Proofs as factories.

And hence the name of my program; the Incredible Proof
Machine.

4. THE MACHINE
In such an approach, what do I have to do to perform a

given proof task? I really only have to place proof blocks and
wire them up. I do not have to enter any syntax. With this
core idea in mind, I set out to develop the Proof Machine,
and it is about time I show it to you.

As you would expect in the 2010s, it is a web application,
and you just have to open incredible.pm in your browser
to start using it. It greets you with a question that might
remind you of the mid-90ies and offers you a choice of proof
tasks to work on. These are grouped by sessions, where every
session introduces a new concept.

Let us start directly with the first task in session 2; this
corresponds to our example on the blackboard, only that
we are now in a more abstract world, where instead of the
proposition “it rains” we have the more abstract “B”.

On the left, I see the blocks of my logic; there would be
more we had used a later session. Among the block is one
that has a striking resemblance with what I have drawn on

the black board, so I can drag that onto the canvas. Just
like the blocks for the assumptions and the conclusion of the
task, this block has little grey connectors; the pointy ones
are outgoing ports and the Pacman-like ones are incoming
ports. I can wire them up again by dragging from one port to
another, and if I do that three times, the proof is complete.
My reward is that the conclusion turns green and I am
tempted to tackle another task.

Let us pick a task where we need a very interesting block,
such as this one (picks the task that proves A → B, B → C
implies A → C). Here, we have to prove an implication.
What block do we have for that? The one with the impli-
cation on the right, which we obviously connect to the goal.
So what is the deal with the strange indent on the top of the
block? Let us check what these connectors do. The one on
the right requires to produce a proof of C. Tricky, but luckily
the port on the left is an outgoing port which provides us
with an A, and together with the two assumptions, we can
complete the proof. I can expand the size of this block to
arrange things nicely.

5. VALID PROOFS
So the system believes that this is valid proof. On what

grounds? Because the proof has none of four possible issues.

1. The first one is quite simple: If any block has one
of its inputs without a connection, then the proof is
incomplete.

2. Then, if any connection is between ports where the
proposition cannot be unified, the connection becomes
red, we see a lovely skull, and the proof is not valid.

3. Obviously, circular reasoning is not allowed either. In
fact, every valid proof can be rearranged so that all
connections go strictly from left to right.

4. And the forth possible issue is a wrongly used local
hypothesis. The A provided by the block down there
must only be used to prove the C; if there is a path that
bypasses this, then the proof is invalid. This effectively
ensures that a valid proof is nicely nested, but does not
enforce it syntactically.

It is a deliberate decision that the system allows for such
invalid connections to be made, so that the student can
explore what is possible and learn from it.

6. REMAINING USER INTERFACE
So while we are at it, let me give you a tour through the

interface of the machine, and its features.
In the top right corner, there are buttons for undo and

redo, to zoom in and out, to save the current proof as an
SVG file and a button to reset the proof.

On the left, we have the current task, given in inference
rule notation. Nothing exciting here.

Below, there are two bars: The upper one shows how many
proof blocks your proof uses, and the lower how many blocks
the smallest known solution has. This is an extra incentive
for those who are bored by just solving the task to think
harder about the structure of the proof. In in this example,
it is actually hard to come up with a sub-optimal solution,
but if I just add a pointless block onto the canvas, you see
that the bar is no longer rewardingly green.

http://incredible.pm/


This brings me to an interesting feature of these proof
graphs: They allow for completely non-linear editing. I can
work from the beginning of the task, or from the back. I can
edit any part of the proof, and I can leave unconnected parts
around. These parts can even be broken, as in this example,
but as long as they are not used to prove the goals, it does
not matter.

Contrast this with conventional text-based theorem provers
with linear focus, where editing something at the top is at
least annoying, or other educational tree based provers out
there, where you usually have to throw away a subtree if you
want to change some inner node. By not getting in the way
with such restrictions, unnecessary frustration is avoided.

But back to the user interface. We have already used the
proof blocks. Below is a helper block. This corresponds to a
cut rule, or Isabelle’s have or, under Curry-Howard, a type
signature. Once placed on the canvas, you can click on it
and enter a proposition, but it is rarely used. It comes in
handy if unification is stuck due to higher order terms, or in
order to structure larger proofs.

And then we have custom blocks. Here, the user can
abstract over partial proofs and create his own blocks, so this
corresponds to defining a lemma in other systems. Lets jump
to the task where we have to prove the principle of proof
by contradiction. Doing that requires three blocks: Tertium
non datur, disjunction elimination and ex falso.

Now in order to not having to place these three blocks
every time we want to do a proof by contradiction, we can
select these blocks using shift-click. The system now creates
a new block based on the selected ones, and with one button
we can add it to our own blocks. The name of the block is
some system-assigned Unicode character – this is sufficient
for recognizability and does not require the user to reach for
the keyboard.

We can now use this block like any other one, for example
to simplify the proof graph at hand.

7. PREDICATE LOGIC
At this point, I believe it is pretty clear to this audience

how the Incredible Proof Machine is used to do simple proofs
in propositional logic. But it gets more interesting if one
tries to do predicate logic.

So let us look at how that is done (Opens the task that
shows that (∃x.P (x)) → A implies ∀x.(P (x) =⇒ A).) The
block for the universal quantifier introduction requires me to
show the predicate for some constant c. If I drag this onto
the canvas, this c gets a unique subscripted index; different
numbers mean different constants. The trick is now that this
constant may only be used in the part of the proof that goes
to the input port of the universal quantifier introduction
block. If there is also a path around it, then the system
will not allow the free variables on the left to unify with
the predicate mentioning c3. This effectively enforces the
usual freshness condition of the natural deduction rule for
the universal quantifier.

Similarly the elimination rule for the existential quantifier:
In order to show something (here Q) using an existentially
quantified proposition, I have to show it assuming the propo-
sition holds for some fresh constant and again this fresh
constant is only accessible in this local proof.

To show that this restriction is necessary, let us create a
proof task that would then be provable, namely that in every
reflexive relation there is an element that related to every

other element. We can, in the overview, create our own tasks
to experiment with. Creates the task that assumes ∀x.P (x, x)
and proves ∃x.∀y.P (x, y). This proof is rejected, but why?
Because it would have to unify y5 with c4, and hence also
y3. If it did that, the proof would be accepted. But since y3
occurs outside the scope of c4, it does not do that.

8. DEFINING YOUR OWN TASKS
So let us turn now to the perspective of someone who wants

to use the Incredible Proof Machine for their own class. You
would go to the GitHub page to fetch the source code and
read the installation instructions. I will not go into detail
here now.

Let us say we want to create an additional task. The
tasks are defined in the file sessions.yaml. Generally, the
Incredible Proof Machine is configured using YAML files,
which is a simple indentation sensitive format for structured
data. This files defines the sessions with some meta-data
and a list of tasks. The meta-data includes the name of the
session, which logic should be used, and which rules should
be visible in this particular session.

A task is simply defined by a list of assumptions and a
list of conclusions, and we can optionally store the size of
the smallest known proof here. This number is not checked
systematically.

So let us add the proof by contradiction in a variant that
uses a negation symbol. After running make and opening
index.html in my local folder, I see the newly added task.
But of course, I cannot prove it yet, because there are no
proof rules for negation.

In order to add these, I have to edit the files in the logics

subdirectory. These describe the proof rules, again in an
YAML file. Let us add the introduction and elimination rules
for negation.

A proof rule has a name, such as notI. This name can also
be used as the description, as in the case of terium non datur,
but most rules have a somewhat fancy description, which a
helpful symbol aligned to the left or to the right.

It has ports. The introduction rule for negation has three
ports: The conclusion is ¬P . The assumption is a contradic-
tion, i.e. false (⊥). And finally, the local hypothesis that we
can use to prove this assumption is that P holds. Here we
need to specify for which input this local hypothesis may be
used.

Finally, we have to say that the P mentioned in these
propositions is free and may unify with any proposition.

We also need to add this rule to the list of visible rules in
our sessions.

Again, we run make to turn the YAML files into JSON
files that the browser can read, and reload the page.

And there, we have our nice shiny negation introduction
block. Note how the Incredible Proof Machine inferred this
particular shape for us, just from the high-level description
of its ports.

With this, we can complete the proof.
As you can see, it is rather simple to extend or likewise

completely change both the presented tasks and the used
logic.

9. DEPLOYMENT
So now you have the tasks and sessions adjusted to the

need of your course, what do you need on your webserver to



make it fly? Nothing! The whole Incredible Proof Machine
lies as static HTML and JavaScript files on the server, and
runs completely in the browser, so you have no special re-
quirements there. Moreover, and that saved my workshop
where the WiFi could not cope with every student having
their own laptop: once the machine is loaded in the browser,
it can be used without an Internet connection.

So that is all there is to adjusting the Proof Machine. I
should say that the set of operator and quantifier symbols is
currently hard-coded, but if this is a limitation to you, let
me know.

10. IMPLEMENTATION
Which brings us right to the next topic: The implemen-

tation. I already told you that the Proof Machine runs
completely in the browser, so obviously there is JavaScript
involved. But I am not masochistic enough to implement a
theorem prover in that language.

Instead, the logical core is implemented in Haskell, and
then compiled down to JavaScript using the rather new
GHCJS compiler. What do I mean by logical core? Ev-
erything related to parsing propositions, to unification, to
checking the well-shapedness of the proof graph. This is best
explained by looking at the type signature of the exported
function, and I hope this audience is indeed interested in
such practical details.

The main entry point is the function incredibleLogic,
which takes a context and a proof, and returns either an
error or an analysis.

Throughout the signature, I regularly need to name things
by strings. To keep these strings statically apart, I use
phantom types to let the type checker help me here, this is
what the Key type is about.

For the type of propositions, I define a simple lambda
calculus. It has n-ary application. It distinguishes between
variables and constants, where a symbol like ∧ would be
a constant, and it uses the unbound library by Stephanie
Weirich and Brent Yorgey to handle all the details of alpha-
equivalence and substitution.

The context is simply a bunch of rules. This is more or
less the information present in the YAML file that we have
edited.

A proof then consists of blocks and connections. Blocks are
either assumptions, conclusions, helper blocks, or rule blocks.
In the first three cases they carry their own proposition, while
in the latter, they reference a rule of the context. Every block
has a unique number, this is used for example to rename the
local variables. A connection then simply connects a port of
one block with another port of some block, both given by
their names. The connections have a sort key so that the
unification algorithm processes them from oldest to youngest;
this way unification errors are more likely to show up at the
just edited connection.

And finally, what does the analysis return? Most impor-
tantly, the qed field tells the UI whether the proof is a proper
proof, and the field portLabels gives the proposition at each
port. The other fields report the four error conditions that
I talked about: At every edge, the unification might have
failed or given up, there might be unconnected incoming
ports, there might by cycles or there might be wrongly used
local hypotheses.

What is interesting inside the implementation? Probably
not much, mostly straight-forward code, for example some

not every efficient graph algorithms to check the various
shape constraints.

For the unification, I was very happy to have found this
paper on higher order unification by Tobias Nipkow [3], where
I just had to translate the ML code to Haskell code. My
main modification is that even if some of the input equations
fail to unify, I do not completely abort, but continue with
the others. This way, mistakes in one part of the proof do
not necessarily prevent the machine from properly processing
other parts.

The rest of the machine, that is the user interface, the
keeping tabs on the tasks and so on, is implemented as plain
JavaScript. I would have loved to implement that in Haskell
as well, possibly using Functional Reactive Programming,
but this way I could use a ready-made graph editing library
called JointJS, which I really did not want to reimplement.

11. THEORY
Finally, let me touch upon the theoretical aspects of the

Incredible Proof Machine. I kept going on talking about
proof graphs, and valid proofs, but what does that actually
mean? How can I know that the Proof Machine only accepts
valid proofs, and how that for everything that we want to
be provable there is a proof graph?

Now, the actual rules are not really part of the Proof
Machine, which is, in this sense, a metalogical framework
– after all, that is why I can speak here. In that light, I
reformulate the question: compared to a more conventional
proof representation, does the proof machine allow me to
prove more or less. The conventional proof representation
here is going to be natural deduction proof trees.

So first I have to find a correspondence between my proof
blocks, and derivation rules in natural deduction. Let me
demonstrate that using the existential elimination block,
because it uses all the features. Let me quickly draw that
block again. The block shape currently does not indicate
where local variables are scoped, so let me come up with an
annotation for that as well.

The corresponding natural deduction rule would be this
one. Draws the inference rule. Note that I am writing this in
the style without explicit contexts, and I am using rectangles
to indicate the scope of variables. Unfortunately, there is
a variety of ways of presenting natural deduction inference
rules.

The theoretical result that I can offer now is that for every
valid proof graph there is a corresponding natural deduction
tree, and the other way around. I have formalised this proof
in Isabelle, you can find it in the Archive of Formal Proofs
[2].

Proving this is one of those things where intuitively, it is
quite clear what to do and why it is true. I just start from
the conclusion backwards and build the tree... or I just start
from the tree, and turn it into a graph. In practice, all kind of
technical issues need to be taken care of, especially as graphs
are not a very nice structure. Anyways, to at least bring
in some insight from the proof: The requirement that proof
graphs are cyclic corresponds to the fact that derivation trees
are finite. The scopes, which I use to check whether a local
hypothesis or local constant is used correctly, correspond to
subtrees.

One main challenge in the proof was that the conditions
around local variables is a global one in the proof graphs: A
local variable must not occur anywhere in the graph outside



its scope. In the natural deduction formulation, the freshness
is a local check, involving only the context and instantiation of
the rule, and such a local constant might be used somewhere
else again. Going from global to local freshness is not an
issue, but the other direction required some careful renaming.

I should note that in my proof I assume the existence
of substitutions that unify the propositions along each con-
nection, so the unification algorithm is not included in the
formal proof.

12. WHAT NEXT?
This concludes my tour with and about the current state

of the Incredible Proof Machine.
Of course I have many plans for the machine. The most

relevant is probably that I want the machine to be able to
present the user’s proof in different forms, such as proof trees
or natural language proofs. Using highlighting on mouse
hover, the connection between the various forms could be
made visible and help the student to understand the various
proof formats easily.

By the way, the Proof Machine is open source and contri-
butions are very welcome.

So as a final remark, I’d like to say that although the
Proof Machine is never going to be a full fledged theorem
prover, I do believe that it has something to contribute to
the world of serious theorem provers. The design space of
non-linear, non-textual interactions with interactive theorem
provers is not fully explored yet. Why do I have to give
names to intermediate facts in an Isabelle proof, instead of
just pointing at them? Why do I have to order my lemmas,
which gives little insight into what uses what? The document
model of modern Isabelle UIs is already a big step forward,
and I am very curious what surprises the next decade will
bring here. I hope that my work will inspire these surprises.

Thank you for your attention.
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