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The Incredible Proof Machine



A simple proof
(uncurrying implication)

A→(B→C)

A∧B

C→A→(B→C)
→B→C

∧

A
BA∧B

C
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• Every input port defines a scope:

A block is in the scope of an input port
iff it is post-dominated by that port.
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Scopes
• Every input port defines a scope:

A block is in the scope of an input port
iff it is post-dominated by that port.

• Each local hypothesis is assigned an input port,
and may only be connected to that
or a block in that port’s scope.



Valid proof graphs are

• Saturated
all input ports are connected

• Acyclic
disregarding local hypotheses

• Well-scoped
all local hypotheses used correctly

• and have a solution
free variables instantiated so that the propositions at the end
of a connection unify



Predicate logic



A proof with ∃

∃x.P(x)∧Q(x)

∃x.P(x)∃

∃x.P(x)∧Q(x)
∧

∃P(c₃)
∃x.P(x)P(c₃)∧Q(c₃)

∃x.P(x)



Freshness side conditions

∃ P(c)∃x.P(x) Q Q

corresponds to

Γ ⊢ ∃𝑥.𝑃 (𝑥) Γ, 𝑃 (𝑐) ⊢ 𝑄 𝑐 fresh in Γ, 𝑃 , 𝑄
Γ ⊢ 𝑄



Local constants
• Are assigned an input port.
• Are uniquely renamed per instance of an block.
• Must not occur in the instantiation of a block outside the
scope of the assigned input port.



Possibly asked questions



Show us your rules? What are your axioms?

Whatever you want…

The Incredible Proof Machine is a meta logic
and configurably with simple YAML files.

You can do propositional logic, predicate logic,
Hilbert style proofs, STLC typing derviations.
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And that is sound? Complete?

Yes it is.

We modeled such proof graphs in Isabelle
and proved it to be equivalent to natural deduction

Joachim Breitner, Denis Lohner:
The meta theory of the Incredible Proof Machine
The Archive of Formal Proofs, Issue May, 2016,
http://isa-afp.org/entries/Incredible Proof Machine.shtml
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Can I introduce and use lemmas?
Add definitions?

Custom blocks
(blocks that encapsulate partial proofs)

serve as lemmas.

Term-level definitions are not yet supported.
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Take my money, I want it!

Keep your money and just go to
http://incredible.pm/

The Incredible Proof Machine
is Free Software and runs completely in the browser.

So if you want to use it for your course,
it is easy to modify and host!
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Conclusion



The design space of
non-linear
non-textual
interactive

interfaces to theorem proving
is still largely unexplored.



Thank you for your attention.
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