A
sound
higher order
interface description language

Joachim Breitner

September 21, 2021
Verified Systems Engineering seminar @ NUS

The backdrop:
DFINITY’s “Internet Computer”

Internet Computer in a nutshell

ey 28

Many canisters (a.k.a. services, processes, smart contracts)

Internet Computer in a nutshell

ey 28

Additionally, external users

Internet Computer in a nutshell

e

= &

Subnet 2

Public Interface

Different transportation layers

Internet Computer in a nutshell

7k The Internet Computer’s system layer provides:

e Async messaging between canisters (actor model) \%
e Messages transport either calls or responses

e Users can perform calls and receive responses

Payload: Method name and raw arguments (a blob)

Canister code can be changed in general

e Some canisters are immutable (“smart contracts”)

not so Internet Computer specific

Our setting (in the abstract)

7k
Our goals

Our setting

: S . e Describe services's interface
Services with identity o,

e Language agnostic

Code can be upgraded

>
[J

e Safe upgrades:

Remote calls > :)
interface evolution without

Raw data transfer

breaking clients

How to build an IDL

Let’s start with some primitive types

7 <t> ::= pat | int | float | bool | text | unit

... and then some composite types ...

“<t> ::=nat | int | float | bool | text | unit
| opt <t> | vec <t>
| record { <name> : <t> ;x }

| variant { <name> : <t> ;x }

{
‘<
S

and service references (now we are higher order!)

<t> ::= pat | int | float | bool | text | unit
opt <t> | vec <t>
record { <name> : <t> ;x }

variant { <name> : <t> ;x }

L)

service { <method_name> : <t> -> <t> ;% }

(Simplified for this talk; Candid has a few more and differs in some.)

Types have no value without values

=13 : unit
0, 1 : nat

[et

-42, 0, 2021 : int

true, false : bool

"hello" : text

none, some "verse" : opt text

[1, 1-1,0,1] : vec int

{ foo = 1; bar = "baz" } : record { foo : nat, bar : text }
#foo 1, #bar "baz" : variant { foo : nat, bar : text }
example.service.com : service { hello : text -> unit }

No communication without representation

~ . e Define a binary wire format for all values.
7 (Nothing exciting here)
e Define encoding and decoding.
Obvious, but important: Decoding raw bytes can fail!

[et

\ o Weird trick:
Don't just serialize <v>, but actually <v> : <t>
i.e. include the type at which the sender serialized the data.

e May allow a more compact representation
e Also needed for what we do next
e Oh, also integrate the IDL in the host language.
(Left as an exercise to the reader for now)

7:

s

Safe upgrades

Services want to change over time

; __ The easy case: Additional methods

7

my_service_ vl : service {
-~ hello : text -> unit

ey

NS

my_service_v2 : service {
hello : text -> unit
time_of : variant { creation; now }
-> record { year : nat; day : nat }

10

Services want to change over time

The still reasonable case: Record and variant extension

7

my_service_v2 : service {
- hello : text -> unit
~._ time_of : variant { creation; now }

NS

-> record { year : nat; day : nat }

l

my_service_v3 : service {
hello : text -> unit
time_of : variant { creation; now; birthday : nat }
-> record { year : nat; day : nat; seconds : nat }

11

Services want to change over time

e
i

my_service_v3 : service {
-~ hello : text -> unit
~._ time_of : variant { creation; now;

NS

-> record { year :

l

my_service_v4 : service {
hello : text -> unit
time_of : variant { creation; now;
-> record { year :

_The why-not case: Other compatible types

birthday :
nat; day :

birthday :
nat; day :

nat }
nat; seconds

int }
nat; seconds : nat }

12

Services want to change over time

r __ The no-please-no case: Changes that break clients

A

kﬁbad,service,vl : service {
-~ hello : text -> unit

~_ weird : record { year : nat; day : nat }

NS

-> variant { creation; now }

&

bad_service_v2 : service {
hello : text -> unit
weird : record { year : nat; day : nat; seconds : nat }

-> variant { creation; now; birthday : int }

13

This concept has a name: Subtyping!

e e
oy

3 — tl <: t2 N
\ subtype supertype

Any value of subtype can be used at supertype.

14

This concept has a name: Subtyping!

Tl <: t2

e

subtype supertype

W

Any value of subtype can be used at supertype.

14

Inference rules rule!

15

Inference rules rule!

t.<o b nat <: int

15

Inference rules rule!

f

t1 <: t t1 <: t

Li<its nat <: int optty <: optt vec t; <: vect

15

Inference rules rule!

(tp <: o tp <: b .ﬁ
i<t nat <: int optty <: optt vec t; <: vect /

1 <: b

% record{n:ty; m:s;} <: record{n:tg;};é’_\

same for service

15

Inference rules rule!

t1 <: t tp <: b .ﬁ

i<t nat <: int optty <: optt vec t; <: vect /

1 <: b

record{n:ty; m:s;} <: record{n:tg;};é’_\

same for service

t1 <: b

variant {n:t1;} <: variant {n:ty; m:s;}

15

Inference rules rule!

t1 <: t tp <: b .ﬁ

i<t nat <: int optty <: optt vec t; <: vect /

1 <: b

record{n:ty; m:s;} <: record{n:tg;};é’_\

same for service

t1 <: b

variant {n:t1;} <: variant {n:ty; m:s;}

ﬁ bh<:t rn<:nr
t1 ->n<:th->n

contravariance!

15

Subtyping = safe upgrades ~ IDL soundness

A service can upgrade from service type /

> tl o t2 % *‘

% without breaking clients if "
12 <y <td

(and we can provide tools to check that)

16

>< What is IDL soundness, precisely?

%

happens in a distributed system?

Ji
A B
> 1. New services are added, at arbitrary type. 1 Q\
2. Services can begin using other services, at their current type. : !
3. Services can evolve, changing their type. 4
4. Services pass service references to other services.

It's important who believes what!

17

Same, but in math font

\{ A fresh in S (A:s)esS k
e SFh{A-5)US S_S(BEA:5)US EN
7
St 59 7 ‘j
{(Ars1), S} — {(A: %), S} el clegis
fit the slide
(AE=C:s1)eS In S, A can send s; to B which receives s, <

S— (BEC:s)US
where S is a set of truths, A = B : s denotes A's belief about B's type.
The relation ~ are the allowed service evolutions, to be instantiated with

conrete rules. \
‘ 18

The soundness criterion

iy,
.i | consider an Interface Definiton Language sound \\
. TS
If) —* S, -
and in S, A sends a message to B, "
then B can decode that message. 9

19

https://github.com/dfinity/candid/blob/master/spec/IDL-Soundness.md

The soundness criterion

-,
.i | consider an Interface Definiton Language sound \\
S S

If § —>* S, >,

and in S, A sends a message to B,
then B can decode that message.

This holds in general if ~ is based on canonical subtyping.

More details in IDL-Soundness.md and the Coq formalization thereof.

19

https://github.com/dfinity/candid/blob/master/spec/IDL-Soundness.md

We could be done now. ..

Unfortunately, users want to do this:

: text };

’frtype User = record { name

N

% my_service : service {

/!i’ register_user :

find user : text -> opt User;

7

User -> unit

type User = record { name :
my_service : service {
register_user : User ->unit

find_user : text -> opt User

text; age :

nat }

Maybe we can allow this?

i-=type User = record { name : text } 3
k my_service : service {
/!i’ register_user : User -> unit /
| ‘ find_user : text -> opt User 'k\
| i

J, if missing, use none i

type User = record { name : text; age : -opt nat };
my_service : service {

register_user : User ->unit

find_user : text -> opt User

Subtyping for missing record optional record fields

% record{...} <: record{n:optt;...}

In words: treat a missing field of type opt ¢ as none.

22

Unfortunately, this is not sound!

... type User = record { name : text } s

¢ type reg_service = service { register_user : User -> unit } " \\

i ;

i _'meta_service = service { add_listener : reg_service -> unit } \\
| < in \L /

;type User = record { name : text; 7
age : opt variant { child; adult } '} 2

At the old types,
meta_service.add_listener(my_service)

is well typed.
But after upgrades,
meta_service sends opt variant { child; adult } but

my_service expects opt nat.s— | l
BOOM \ 23

To fix that, opt is special

WIS o
: opt t; <: opt b look, no assumptions! 7

When decoding, check given type t; against expected type t:

o If't; <: to, use the value,

o else, ignore value, treat as none

This is a dynamic type check!

And while we are at it. ..

l/!’ -
e y ‘&l
any type works! ~~ > f1 =i 0pth e .

“"When decoding, if t; is not an opt ..., pretend it is, and continue as before. _

And while we are at it. ..

i
l/!’ /
*: 2%
| t1 <: opt t ! A
any type works! <7 BLsi opbb s .
“"When decoding, if t; is not an opt ..., pretend it is, and continue as before. _ i

Use case: Previously required arguments.can be made optional.

And while we are at it. ..

g\ any type works! ~~ = fL < 0PtE2 =
“When decoding, if t; is not an opt ..., pretend it is, and continue as before. 7

Use case: Previously required arguments.can be made optional.

Additional complexities with equirecursive types (opt optopt...)
Better restrict this to only when t; is itself not an opt type.

o 2

Alternatives?

* e Can one really not avoid the dynamic check? : ‘

/il We considered special argument record types, or special field markers, -

ViSes that change subtyping to allow extension in argument position. But &

breaks using the same type definitions in argument and result position. 7 /2

% e s it maybe enough to dynamically check the value? l""
No: service reference values would slip through, breaking soundness. '

e One can at least use a dedicated type operator (upgraded...)?

Yes, that works

e Any other weird ideas?
Plenty. See Motoko issue #1523 for the full epic saga.

|

o 2

https://github.com/dfinity/motoko/issues/1523

Summary

7
I
[J

A interface description language is important for distributed systems

* e We defined what sound and higher order means : “‘\
/f e Canonical subtyping does what we want, in general ../
7 e Record extension in both positions is possible, but tricky ; ,&
- e We skipped a bunch of (mostly) engineering decisions 7

Thank you for your attention!

Further reading:

e The/Candid spec

The Candid manual

My Candid explainer blog post
The IDL Soundness definition

The Coq formalization EF.‘AL ' 57

https://github.com/dfinity/candid/blob/master/spec/Candid.md
https://sdk.dfinity.org/docs/candid-guide/candid-intro.html
https://www.joachim-breitner.de/blog/782-A_Candid_explainer__The_rough_idea
https://github.com/dfinity/candid/blob/master/spec/IDL-Soundness.md
https://github.com/dfinity/candid/tree/master/coq

	The backdrop: DFINITY’s “Internet Computer”
	How to build an IDL
	Safe upgrades
	What is IDL soundness, precisely?
	We could be done now…

