
A
sound
higher order
interface description language

Joachim Breitner

September 21, 2021
Verified Systems Engineering seminar @ NUS

The backdrop:
DFINITY’s “Internet Computer”

Internet Computer in a nutshell

request

response

request

response

Subnet 1

Subnet 2Public Interface

Many canisters (a.k.a. services, processes, smart contracts)

2

Internet Computer in a nutshell

request

response

request

response

Subnet 1

Subnet 2Public Interface

Additionally, external users

2

Internet Computer in a nutshell

request

response

request

response

Subnet 1

Subnet 2Public Interface

Different transportation layers

2

Internet Computer in a nutshell

The Internet Computer’s system layer provides:

• Async messaging between canisters (actor model)

• Messages transport either calls or responses

• Users can perform calls and receive responses

• Payload: Method name and raw arguments (a blob)

• Canister code can be changed in general

• Some canisters are immutable (“smart contracts”)

. . . not so Internet Computer specific

3

Our setting (in the abstract)

Our setting

• Services with identity

• Code can be upgraded

• Remote calls

• Raw data transfer

Our goals

• Describe services’s interface

• Language agnostic

• Safe upgrades:
interface evolution without
breaking clients

4

How to build an IDL

Let’s start with some primitive types

<t> ::= nat | int | float | bool | text | unit

5

. . . and then some composite types . . .

<t> ::= nat | int | float | bool | text | unit

| opt <t> | vec <t>

| record { <name> : <t> ;* }

| variant { <name> : <t> ;* }

6

. . . and service references (now we are higher order!)

<t> ::= nat | int | float | bool | text | unit

| opt <t> | vec <t>

| record { <name> : <t> ;* }

| variant { <name> : <t> ;* }

| service { <method_name> : <t> -> <t> ;* }

(Simplified for this talk; Candid has a few more and differs in some.)

7

Types have no value without values

() : unit

0, 1 : nat

-42, 0, 2021 : int

true, false : bool

"hello" : text

none, some "verse" : opt text

[], [-1,0,1] : vec int

{ foo = 1; bar = "baz" } : record { foo : nat, bar : text }

#foo 1, #bar "baz" : variant { foo : nat, bar : text }

example.service.com : service { hello : text -> unit }

8

No communication without representation

• Define a binary wire format for all values.
(Nothing exciting here)

• Define encoding and decoding.
Obvious, but important: Decoding raw bytes can fail!

• Weird trick:
Don’t just serialize <v>, but actually <v> : <t>

i.e. include the type at which the sender serialized the data.
• May allow a more compact representation
• Also needed for what we do next

• Oh, also integrate the IDL in the host language.
(Left as an exercise to the reader for now)

9

Safe upgrades

Services want to change over time

The easy case: Additional methods

my_service_v1 : service {

hello : text -> unit

}

my_service_v2 : service {

hello : text -> unit

time_of : variant { creation; now }

-> record { year : nat; day : nat }

}
10

Services want to change over time

The still reasonable case: Record and variant extension

my_service_v2 : service {

hello : text -> unit

time_of : variant { creation; now }

-> record { year : nat; day : nat }

}

my_service_v3 : service {

hello : text -> unit

time_of : variant { creation; now; birthday : nat }

-> record { year : nat; day : nat; seconds : nat }

}
11

Services want to change over time

The why-not case: Other compatible types

my_service_v3 : service {

hello : text -> unit

time_of : variant { creation; now; birthday : nat }

-> record { year : nat; day : nat; seconds : nat }

}

my_service_v4 : service {

hello : text -> unit

time_of : variant { creation; now; birthday : int }

-> record { year : nat; day : nat; seconds : nat }

}
12

Services want to change over time

The no-please-no case: Changes that break clients

bad_service_v1 : service {

hello : text -> unit

weird : record { year : nat; day : nat }

-> variant { creation; now }

}

bad_service_v2 : service {

hello : text -> unit

weird : record { year : nat; day : nat; seconds : nat }

-> variant { creation; now; birthday : int }

}
13

This concept has a name: Subtyping!

t1 <: t2

subtype supertype

can evolve to

Any value of subtype can be used at supertype.

14

This concept has a name: Subtyping!

t1 <: t2

subtype supertype

can evolve to

Any value of subtype can be used at supertype.

14

Inference rules rule!

t <: t

nat <: int

t1 <: t2

opt t1 <: opt t2

t1 <: t2

vec t1 <: vec t2

t1 <: t2

record {n:t1; m:s;} <: record {n:t2;}

same for service

;

t1 <: t2

variant {n:t1;} <: variant {n:t2; m:s;}

contravariance!

t2 <: t1 r1 <: r2

t1 -> r1 <: t2 -> r2

15

Inference rules rule!

t <: t nat <: int

t1 <: t2

opt t1 <: opt t2

t1 <: t2

vec t1 <: vec t2

t1 <: t2

record {n:t1; m:s;} <: record {n:t2;}

same for service

;

t1 <: t2

variant {n:t1;} <: variant {n:t2; m:s;}

contravariance!

t2 <: t1 r1 <: r2

t1 -> r1 <: t2 -> r2

15

Inference rules rule!

t <: t nat <: int

t1 <: t2

opt t1 <: opt t2

t1 <: t2

vec t1 <: vec t2

t1 <: t2

record {n:t1; m:s;} <: record {n:t2;}

same for service

;

t1 <: t2

variant {n:t1;} <: variant {n:t2; m:s;}

contravariance!

t2 <: t1 r1 <: r2

t1 -> r1 <: t2 -> r2

15

Inference rules rule!

t <: t nat <: int

t1 <: t2

opt t1 <: opt t2

t1 <: t2

vec t1 <: vec t2

t1 <: t2

record {n:t1; m:s;} <: record {n:t2;}

same for service

;

t1 <: t2

variant {n:t1;} <: variant {n:t2; m:s;}

contravariance!

t2 <: t1 r1 <: r2

t1 -> r1 <: t2 -> r2

15

Inference rules rule!

t <: t nat <: int

t1 <: t2

opt t1 <: opt t2

t1 <: t2

vec t1 <: vec t2

t1 <: t2

record {n:t1; m:s;} <: record {n:t2;}

same for service

;

t1 <: t2

variant {n:t1;} <: variant {n:t2; m:s;}

contravariance!

t2 <: t1 r1 <: r2

t1 -> r1 <: t2 -> r2

15

Inference rules rule!

t <: t nat <: int

t1 <: t2

opt t1 <: opt t2

t1 <: t2

vec t1 <: vec t2

t1 <: t2

record {n:t1; m:s;} <: record {n:t2;}

same for service

;

t1 <: t2

variant {n:t1;} <: variant {n:t2; m:s;}

contravariance!

t2 <: t1 r1 <: r2

t1 -> r1 <: t2 -> r2

15

Subtyping ⇒ safe upgrades ≈ IDL soundness

A service can upgrade from service type

t1 to t2

without breaking clients if

t2 <: t1

(and we can provide tools to check that)

16

What is IDL soundness, precisely?

What happens in a distributed system?

1. New services are added, at arbitrary type.

2. Services can begin using other services, at their current type.

3. Services can evolve, changing their type.

4. Services pass service references to other services.

It’s important who believes what!

17

Same, but in math font

A fresh in S

S −→ (A : s) ∪ S

(A : s) ∈ S

S −→ (B |= A : s) ∪ S

s1 s2

{(A : s1), S
′} −→ {(A : s2), S

′}

(A |= C : s1) ∈ S In S , A can send s1 to B which receives s2

details didn’t
fit the slide

S −→ (B |= C : s2) ∪ S

where S is a set of truths, A |= B : s denotes A’s belief about B ’s type.

The relation are the allowed service evolutions, to be instantiated with
conrete rules.

18

The soundness criterion

I consider an Interface Definiton Language sound

If ∅ −→∗ S ,
and in S , A sends a message to B ,
then B can decode that message.

This holds in general if is based on canonical subtyping.

More details in IDL-Soundness.md and the Coq formalization thereof.

19

https://github.com/dfinity/candid/blob/master/spec/IDL-Soundness.md

The soundness criterion

I consider an Interface Definiton Language sound

If ∅ −→∗ S ,
and in S , A sends a message to B ,
then B can decode that message.

This holds in general if is based on canonical subtyping.

More details in IDL-Soundness.md and the Coq formalization thereof.

19

https://github.com/dfinity/candid/blob/master/spec/IDL-Soundness.md

We could be done now. . .

Unfortunately, users want to do this:

type User = record { name : text };

my_service : service {

register_user : User -> unit

find_user : text -> opt User;

}

?
type User = record { name : text; age : nat }

my_service : service {

register_user : User -> unit

find_user : text -> opt User

}

20

Maybe we can allow this?

type User = record { name : text }

my_service : service {

register_user : User -> unit

find_user : text -> opt User

}

type User = record { name : text; age :

if missing, use none

opt nat };

my_service : service {

register_user : User -> unit

find_user : text -> opt User

}

21

Subtyping for missing record optional record fields

record { . . . } <: record {n: opt t; . . . }

In words: treat a missing field of type opt t as none.

22

Unfortunately, this is not sound!

type User = record { name : text }

type reg_service = service { register_user : User -> unit }

meta_service = service { add_listener : reg_service -> unit }

type User = record { name : text;

age : opt variant { child; adult } }

At the old types,
meta_service.add_listener(my_service)

is well typed.

But after upgrades,
meta_service sends opt variant { child; adult } but
my_service expects opt nat.

BOOM 23

To fix that, opt is special

look, no assumptions!opt t1 <: opt t2

When decoding, check given type t1 against expected type t2:

• If t1 <: t2, use the value,

• else, ignore value, treat as none

This is a dynamic type check!

24

And while we are at it. . .

any type works! t1 <: opt t2

When decoding, if t1 is not an opt . . ., pretend it is, and continue as before.

Use case: Previously required arguments can be made optional.

Additional complexities with equirecursive types (opt opt opt . . .)
Better restrict this to only when t2 is itself not an opt type.

25

And while we are at it. . .

any type works! t1 <: opt t2

When decoding, if t1 is not an opt . . ., pretend it is, and continue as before.

Use case: Previously required arguments can be made optional.

Additional complexities with equirecursive types (opt opt opt . . .)
Better restrict this to only when t2 is itself not an opt type.

25

And while we are at it. . .

any type works! t1 <: opt t2

When decoding, if t1 is not an opt . . ., pretend it is, and continue as before.

Use case: Previously required arguments can be made optional.

Additional complexities with equirecursive types (opt opt opt . . .)
Better restrict this to only when t2 is itself not an opt type.

25

Alternatives?

• Can one really not avoid the dynamic check?
We considered special argument record types, or special field markers,
that change subtyping to allow extension in argument position. But
breaks using the same type definitions in argument and result position.

• Is it maybe enough to dynamically check the value?
No: service reference values would slip through, breaking soundness.

• One can at least use a dedicated type operator (upgraded . . .)?
Yes, that works

• Any other weird ideas?
Plenty. See Motoko issue #1523 for the full epic saga.

26

https://github.com/dfinity/motoko/issues/1523

Summary

• A interface description language is important for distributed systems
• We defined what sound and higher order means
• Canonical subtyping does what we want, in general
• Record extension in both positions is possible, but tricky
• We skipped a bunch of (mostly) engineering decisions

Thank you for your attention!

Further reading:

• The Candid spec
• The Candid manual
• My Candid explainer blog post
• The IDL Soundness definition
• The Coq formalization 27

https://github.com/dfinity/candid/blob/master/spec/Candid.md
https://sdk.dfinity.org/docs/candid-guide/candid-intro.html
https://www.joachim-breitner.de/blog/782-A_Candid_explainer__The_rough_idea
https://github.com/dfinity/candid/blob/master/spec/IDL-Soundness.md
https://github.com/dfinity/candid/tree/master/coq

	The backdrop: DFINITY’s “Internet Computer”
	How to build an IDL
	Safe upgrades
	What is IDL soundness, precisely?
	We could be done now…

