Deutsche
Telekom
Stiftung

Karlsruhe Institute of Technology

Formally Proving a Compiler Transformation Safe

Joachim Breitner
Haskell Symposium 2015
3 August 2015, Vancouver

PROGRAMMING PARADIGMS GROUP

KIT — University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

Short summary

Karlsruhe Institute of Technology

| formally proved that

Call Arity is safe.

2 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

Short summary ﬂ(".

| formally proved that

Call Arity is safe.

W>TIS

Short summary ﬂ(".

| formally proved that

Call Arity is safe.

(1
What exactly have you shown?”

H
A
B

Short summary ﬂ(".

| formally proved that

Call Arity is safe.

(1
What exactly have you shown?”

11
H ow did you prove that?”

A
B

Short summary ﬂ(".

| formally proved that

Call Arity is safe.

(1

What exactly have you shown?”
11

H ow did you prove that?”

(1
A re you sure about this?”

B

Short summary ﬂ(“.

| formally proved that

Call Arity is safe.

(1

What exactly have you shown?”
11

H ow did you prove that?”

(1
A re you sure about this?”

What exactly is. .. Call Arity?

Call Arity is an arity analysis:

let fac 10 = id letfac 10y =y
fac x =\y. fac (x+1) (y*x) — fac x y =fac (x+1) (y*x)
infac 01 infac0 1

3 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

3

What exactly is... Call Arity?

Call Arity is an arity analysis:

let fac 10 = id letfac 10y =y
fac x =\y. fac (x+1) (y*x) — fac x y =fac (x+1) (y*x)
infac 01 infac0 1

So far: Naive forward arity analysis, see Gill's PhD thesis from 96

2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

What exactly is...the problem? ﬂ(“.

Eta-expanding a thunk is tricky:

let thunk = f x . let thunky =fxy
in... in...

4 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

What exactly is...the problem? ﬂ(“.

Eta-expanding a thunk is tricky:
let thunk = f x let thunky =fxy
‘ = .

in... in...

Sharing can be lost!

4 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

What exactly is...the problem? ﬂ(“.

Eta-expanding a thunk is tricky:

let thunk = f x . let thunky =fxy
in... in...

Sharing can be lost!

(unless “thunk” is used at most once in “...”)

4 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

What exactly is... co-call cardinality analysis?

Go(if pthen x else y) = <

X0:

Go(fxy) f<

y—=

5 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

What exactly is... Call Arity? ﬂ(“.

Call Arity

Arity analysis with co-call cardinality analysis

6 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

6

What exactly is... Call Arity? ﬂ(“.

Call Arity
Arity analysis with co-call cardinality analysis

Now foldl can be a good consumer in list-fusion!

2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

What exactly is... “safe”? ﬂ(“.

Safety: It is safe for the compiler to apply the
transformation, i.e. the performance
will not degrade.

7 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

What exactly is... “safe”? o

Safety: It is safe for the compiler to apply the
transformation, i.e. the performance
will not degrade.

Yes, it is synonymous to “improvement”.

7 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

AT

What exactly is. .. could possibly go wrong?

A bug in Call Arity
U

8 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

AT

What exactly is. .. could possibly go wrong?

A bug in Call Arity
U

Too much eta-expansion

4

8 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

Karlsruhe Institute of Technology

What exactly is. .. could possibly go wrong?

A bug in Call Arity
U

Too much eta-expansion

4

Loss of sharing

4

8 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

Karlsruhe Institute of Technology

What exactly is. .. could possibly go wrong?

A bug in Call Arity
U

Too much eta-expansion

4

Loss of sharing

.
Work is duplicated

4

8 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

Karlsruhe Institute of Technology

What exactly is. .. could possibly go wrong?

A bug in Call Arity
U

Too much eta-expansion

4

Loss of sharing

.
Work is duplicated

4

Allocation is increasing

8 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

Karlsruhe Institute of Technology

What exactly is. .. could possibly go wrong?

A bug in Call Arity

4

Too much eta-expansion
2

Loss of sharing
U
Work is duplicated
U Theorem: Call Arity does not
increase the number
Allocation is increasing of allocations

8 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

8

AT

What exactly is...could possibly go wrong?

A bug in Call Arity
U

Too much eta-expansion

4

Loss of sharing

.
Work is duplicated

4

Allocation is increasing

2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe

No (such) bug

Theorem: Call Arity does not
increase the number
of allocations

PROGRAMMING PARADIGMS GROUP

How did you prove that?

istingredient Sufficiently detailed semantics:

Launchbury’s natural semantics for lazy evaluation.

r-elA:v

heap before final value
current expression heap afterwards

9 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

Karlsruhe Institute of Technology

How did you prove that?

istingredient Sufficiently detailed semantics:
Sestoft’'s mark-1 virtual machine
F e S)=(I"¢,9)

\
current heap next stack

current expression next expression
current stack next heap

9 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

How did you prove that? et

2nd ingredient Abstract view on what calls what:

Trace trees!

10 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

AT

How did you prove that?

2nd ingredient Abstract view on what calls what:

Trace trees!

To(if pthen x else y) = ‘_p_<

To(fxy) =

10 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

Karlsruhe Institute of Technology

How did you prove that?

2nd ingredient Abstract view on what calls what:

Trace trees!

To(if pthen x else y) = ‘—&<

To(fxy) =

Co-call graphs approximates trace trees
It even is a Galois immersion.

10 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

How did you prove that? et

3nd ingredient A way to handle a large proof:

Refinement proofs

1 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

1

How did you prove that?

3nd ingredient A way to handle a large proof:

Refinement proofs

Arity Arity Arity
analysis analysis analysis
+ impl. + approx. +
any a a co-call
cardinality trace tree graph

analysis analysis analysis

2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe

AT

L Gall Arity

PROGRAMMING PARADIGMS GROUP

Are you sure? et

Syntax (using Nominal logic)

Semantics (Launchbury, Sestoft, denotational)
Data types (Co-call graphs, trace trees)

... and of course the proofs

lemma end2end_closed:
assumes closed: "fv e = ({} :: var set)"
assumes "([1, e, [1) =" (T,v,[1)"
assumes "isVal v"
obtains T'' and v'
where "([], transform 0 e, []) =" (I'',v',[]1)"
and "card (domA I'') < card (domA I')"
and "isval v'"
proof-

12 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

The formalization gap!

13 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

The formalization gap!

13 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

The formalization gap!

13 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

The formalization gap!

13 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

14

Bug #10176

let foox =error"..."
in...casefooabof...

| Strictness analyzer

let foo x =error"..." -- Strictness: <L,U>b
in...casefooabof...
| Call Arity

letfooxy=error"..."y -- Strictness: <L,U>b
in...casefooabof...

| Simplifier

letfooxy=error"..."y -- Strictness: <L,U>b
in ...case foo a of {}

2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe

B\

Karlsruhe Institute of Technology

PROGRAMMING PARADIGMS GROUP

Conclusion A

Karlsruhe Institute of Technology

Yes, we can...

formally prove a compiler transformation to be safe.

15 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

Conclusion

Karlsruhe Institute of Technology

Yes, we can...

formally prove a compiler transformation to be safe.

m Increased the quality
Uncovered a bug missed by
tests.

m Refactorable
when the code changes

m Provides high assurance

15 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

Conclusion AT

Yes, we can...

formally prove a compiler transformation to be safe.

m Increased the quality u Very tedious
Uncovered a bug missed by Still only worth it in certain
tests. domains?

m Refactorable m Formalization gap
when the code changes Is GHC the wrong target?

m Provides high assurance

15 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

Thank you for your attention.

Minecraft image © CC-BY-NC-SA iScr34m http://fav.me/d3lhdg2
Island image (© CCO CSITDMS https://pixabay.com/de/insel- strand- sandstrand-philippinen-218578/
Bridge image © CC-BY-SA Sulfur https://commons.wikimedia.org/wiki/File:Hoan_Bridge.jpg
Car drawing (© CC-BY-NC Randall Munroe https://what-if.xkcd.com/61/

http://fav.me/d3lhdq2
https://pixabay.com/de/insel-strand-sandstrand-philippinen-218578/
https://commons.wikimedia.org/wiki/File:Hoan_Bridge.jpg
https://what-if.xkcd.com/61/

Backup slide: How tedious, really? ﬂ(“.

.,/__,/(g}\,._ =

77 N\
iGN
Nl \

I O?Z/

ity

a 9 man-months
a 12,000 loc
a 1,200 lemmas
m 79 theories

s S —

Backup slide: That bug that was found AT

Karlsruhe Ins

Call Arity initially would fooa=
eta-expand thunks in a letgo|a=="m"
recursive group, as long as =\X. ifx ==
the recursion is linear. then 1
else x x go (x-1)
la=="p"
=X ifx==
then 0
else x + go (x-1)
in go 100

18 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

