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Abstract

IN his dissertation[9], Olin Shivers introduces a concept of control flow
graphs for functional languages, provides an algorithm to statically derive

a safe approximation of the control flow graph and proves this algorithm
correct. In this student research project, Shivers’ algorithms and proofs are
formalized using the theorem prover system Isabelle.
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CHAPTER 1

Introduction

CONTROL Flow Analysis plays an important role in compiler construction
as well as in security analysis. Having the latter case in mind, Daniel

Wasserrab provides a formally verified slicing framework acting on an ab-
stract and language-independent control flow graph in his dissertation[11].
This framework has been instantiated for programs written in either a simple
toy imperative language or the Java-like language Jinja[6].

These programming languages are imperative. Therefore, we are interested
in its applicability to functional languages. This requires a notion of a control
flow graph for functional programs. In 1991, Olin Shivers defined such a
control flow graph and developed a static analysis algorithm to calculate it.
Later research on functional control flow is often based on his definition.

To be able to connect to Wasserrab’s framework, the definitions and algo-
rithms of Shivers need to be formalized in the theorem prover system Isabelle.
This is the main goal of this project, although we treat the actual connection
only theoretically.

This document starts with a concise overview of Shivers’ approach in Chap-
ter 2. Then we explain the prototype in Haskell (Chapter 3) as well as the
formalization in Isabelle (Chapter 4), stating where it differs from the original.
We motivate some of the more interesting choices in the formalization, such as
the use of HOLCF. Some lemmas took several failed or unsatisfying attempts,
which we do not hush up. We took special care to make the appearance of
the documents generated by Isabelle as similar to the original as possible.
Section 4.6 presents the tricks used to that end. Chapter 5 explains how these
results could be connected to Wasserrab’s framework.

A total of 3632 lines of Isabelle code (including comments) and 890 lines of
Haskell code (including 199 lines of commentary) were written.
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CHAPTER 2

Taming Lambdas

FUNCTIONAL languages, i.e. programming languages that treat computa-
tions as first class citizens, are harder to tackle by control flow analysis

than imperative languages. For the latter, a function call names the function
that will be called and a static analysis can easily trace the control flow at that
point. In functional languages, the callee can be a variable which, in turn, can
stand for any computation that was stored somewhere else in the program.

Additionally, such a stored computation is a closure, i.e. it remembers the
variable assignments from the time the closure was created. Therefore, a
variable can have more than one current value at any given point in the
program execution, where different closures see different values. This is an
additional issue when trying to statically make statements about a functional
program’s control flow.

Shivers approaches this problem in his 1991 Ph.D. thesis, subtitled “taming
lambdas”. He defines an exemplary functional language in continuation-
passing style (CPS). CPS means that the return value of functions is not actually
returned, but rather passed on to a continuation function, which is provided
as an argument. Consider for example the following code :

main = print ((x + y) ∗ (z − w))

In continuation-passing style, the each of the operations +, ∗, − and print
takes a continuation argument, and the main function is being passed a top-
level continuation:

main c = + x y (ńxy. − z w (ńzw. ∗ xy zw (ńprod. print prod c)))
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2 Taming Lambdas

PR ::= LAM
LAM ::= (λ (v1 . . . vn) c) [vi ∈ VAR, c ∈ CALL]

CALL ::= ( f a1 . . . an) [ f ∈ FUN, ai ∈ ARG]

(letrec (( f1 l1) . . .) c) [ fi ∈ VAR, li ∈ LAM, c ∈ CALL]
FUN ::= LAM + REF + PRIM
ARG ::= LAM + REF + CONST
REF ::= VAR
VAR ::= {x,y,foo, . . .}

CONST ::= {3,#f, . . .}
PRIM ::= {+,if,test-integer, . . .}

LAB ::= {li, ri, ci, . . .}

Figure 1: CPS syntax

2.1 Syntax

The syntax of Shivers’ toy functional programming language is given in
Figure 1. A program (PR) is a lambda expression. A lambda expression
(LAM) abstracts a call. Calls (CALL) either call a function with the given
argument list or bind lambdas to names. Such calls are named letrec because
the bound lambdas may refer to each other in a possibly mutually recursive
fashion, making the language Turing-complete.

Function values (FUN) can be lambda expressions, references to variables
or primitive operations, while in argument positions (ARG), primitive op-
erations are disallowed and constant expressions are allowed. References
to variables (REF) name the referenced variable. There is a set of variable
names (VAR). Constants (CONST) are either integers or #f for a false value. A
number of primitive operations (PRIM) are defined. Shivers treats mutable
references and adds corresponding primitive operations in later chapters of
his dissertation. We omit this and concentrate on the primitive operations +
and if.

Although not given explicitly, every lambda, call, constant, variable reference
and primitive operation is tagged with a unique label from the set LAB. These
can be thought of as positions in the program source – for our purpose they

10



2.2 Standard Semantics

Bas = Z+ {false} PR : PR ⇀ Ans
Clo = LAM× BEnv A : ARG∪ FUN→ BEnv→ VEnv→ D

Proc = Clo + PRIM + {stop} C : CALL→ BEnv→ VEnv→ CN ⇀ Ans
D = Bas + Proc F : Proc→ D∗ → VEnv→ CN ⇀ Ans

CN = (contours)
BEnv = LAB ⇀ CN
VEnv = (VAR×CN) ⇀ D

Ans = (D + {error})⊥

Figure 2: CPS semantics domains

are just an abstract set. Additional internal labels are added to this set for
primitive operations, representing the internal call sites. For example the if

primitive operation is being passed two continuation that might be called, one
for the true case and one for the false case. Therefore, two internal labels are
associated with this primitive operation. Also we assume that programs are
alphatised, i.e. each variable name v is bound at exactly one position, whose
label is given by binder v.

2.2 Standard Semantics

Shivers gives a denotational semantics for the above language, that is a partial
function PR from the set of programs to the set of integers with an additional
element indicating run-time errors (Ans). Following the structure of the syn-
tax tree, he defines functions C, F and A that evaluate call expressions, apply
arguments to procedures and evaluate argument expressions, respectively.
Their domains and ranges are given in Figure 2. The rather lengthy equations
of their definitions are omitted here.

Semantic values (D) can either be basic values (Bas) which consist of the
integers plus the value representing false, or a procedure. Procedures (Proc)
again are either a closure (Clo), which is a lambda expression bundled with a
context, a primitive operation or stop.

The special value stop is the continuation initially passed to the program.
When this is eventually called, either in a CALL expression or as the con-
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2 Taming Lambdas

tinuation of a primitive operation, the evaluation comes to a halt and the
argument to stop is the result of the evaluation. If a run-time error occurs
(wrong number of arguments, callee not a procedure, undefined variable
lookup), error is returned.

The semantics functions are partial functions, indicated by the harpoon in-
stead of the arrow and by the ⊥ annotation of the set Ans of answer val-
ues. Functional programs are Turing-complete and therefore possibly non-
terminating. For such programs, the semantics is defined to return ⊥.

The evaluation context needs to be passed along the semantics functions
and closure values need to encapsulate the context at the time the lambda
expression is evaluated to a closure. The context information is separated
into two maps here: The global variable environment (VEnv) and the lexical
contour environment (or binding environment, BEnv, in the following usually
denoted by β). The variable environment can store multiple values for each
variable name. These are differentiated by a contour number from the set CN.
These can be thought of time stamps which are increased in every evaluation
step. When a variable is bound to a new value, it is stored in the variable
environment with the current contour number. The contour environment
tells for each binding position (lambda or letrec expression) which contour
counter is to be used when looking up a variable bound there. By storing the
contour environment within a closure and using it when evaluating the call
inside the closure, the correct value for each variable binding is accessed.

The set CN of contours is not given explicitly here. Instead, we will treat it
abstractly and only state the properties we expect from this set: There needs
to be an initial contour b0 and a function nb : CN → CN which generates
new contours. The set of contours is partially ordered and if b is greater
or equal than all allocated contours, then nb b is strictly greater than all
allocated contours. It is easy to see that the natural numbers with b0 = 0
and nb b = Suc b fulfill the requirements, but in the later proofs it will be
convenient to choose other sets carrying more information.

2.3 Exact nonstandard semantics

At the moment we are not so much interested in the value a program returns
but rather the calls that occur while evaluating the program. To that end we
alter the standard semantics introduced in the previous section to calculate
the call cache. This is a partial map from call-site/contour-environment pairs
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2.4 Abstract nonstandard semantics

C (c : ( f a1 . . . an)) β ve b =

{
[], f ′ /∈ Proc
(F f ′ av ve b′)[(c, β) 7→ f ′], otherwise

where f ′ = A f β ve
avi = A ai β ve
b′ = nb b

Figure 3: The exact nonstandard semantics for a call expression

to procedures. We therefore modify the domains of the semantics in Figure 2
on page 11 as follows:

CCache = (LAB× BEnv) ⇀ Proc
Ans = CCache

The semantics function definitions are extended to record the calls as they
happen. Figure 3 shows exemplary the equation of C for a call expression
( f a1 . . . an) with label c. If the syntactic value f is evaluated to a procedure
f ′ ∈ Proc, evaluation continues by applying F to f ′ and the arguments. This
returns a call cache, which is amended by the entry (c, β) 7→ f ′ to reflect the
current call before the updated call cache is returned by C.

This semantics evaluates the program in full, just like the standard semantics,
and is therefore unsuitable to be used in a static analysis. Nevertheless it
is the theoretic ideal that a statically calculated call cache will be compared
against.

2.4 Abstract nonstandard semantics

Shivers then proceeds to define a nonstandard semantics that can be calcu-
lated statically. The trade off is that the call cache obtained now is just an
approximation to the exact call cache, i.e. any observed call in the exact call
cache will be in the abstract call cache, but the converse does not need to
hold.

Figure 4 on the following page gives the domains of the abstract semantics
functions. The abstract semantics P̂R will run the program no longer in
full detail. It will not keep track of actual values computed and conditional

13



2 Taming Lambdas

Ĉlo = LAM× B̂Env B̂Env = LAB ⇀ ĈN

P̂roc = Ĉlo + PRIM + {stop} V̂Env = (VAR× ĈN) ⇀ D̂

D̂ = P(P̂roc) ĈCache = (LAB× B̂Env)→ D̂

ĈN = (contours, finite) Âns = ĈCache

P̂R : PR ⇀ Âns

Â : ARG∪ FUN→ B̂Env→ V̂Env→ D̂

Ĉ : CALL→ B̂Env→ V̂Env→ ĈN ⇀ Âns

F̂ : P̂roc→ D̂
∗ → V̂Env→ ĈN ⇀ Âns

Figure 4: Abstract nonstandard semantics domains

branches taken. Instead, it assumes that every branch of an if statement is
possibly taken. Semantic values are now sets of possible procedures. This can
be seen in Figure 5, which contains both the exact and the abstract nonstan-
dard semantics definitions for a conditional expression. The continuations
respectively, in the abstract case, the sets of possible continuations are passed
as the arguments c0 and c1.

After removing the plain values from our semantics domains, the remaining
sets would all be finite – if ĈN was finite. This is the main trick to obtain a
computable abstract semantics. If ĈN is finite, there are only finitely many
possible closures, procedures, binding environment, variable environments
and call caches, and our function becomes computable.

Naturally, there is a loss of information when replacing the infinite set of
contour counters in the exact case by a finite set. Variable bindings that
could otherwise be distinguished by their contour counter now fall together.
Therefore, the abstract variable environment tracks sets of possible values for
each variable/contour counter pair.

Again, the choice of the set ĈN is not fixed. Possible choices include the
singleton set, resulting in “0th-order Control Flow Analysis” (0CFA) or the set
of lambdas representing the call site a lambda was called from, resulting in
first-order Control Flow Analysis (1CFA). To be able to track this information,
the function n̂b, used to generate new contour counters, takes such a label as
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2.5 Main results

F if [v, c0, c1] ve b =


[], if c0 /∈ Proc or c1 /∈ Proc
{(ip0, β) 7→ c0} ∪ F c0 [] ve (nb b), if v 6= 0
{(ip1, β) 7→ c1} ∪ F c1 [] ve (nb b), if v = 0

where β = {p 7→ b}

F̂ if [v, c0, c1] ve b =
⋃

f∈c0

F̂ f [] ve (n̂b b ip0)

∪
⋃

f∈c0

F̂ f [] ve (n̂b b ip1)

∪ {(ip0, β) 7→ c0, (ip1, β) 7→ c1}
where β = {p 7→ b}

Figure 5: Comparison of the nonstandard semantics for a conditional expres-
sion with label p and internal labels ip0 and ip1

an additional argument. It is ignored when performing 0CFA, and it is stored
as the contour counter in 1CFA.

This generalizes to kCFA, where the last k call sites are tracked by the abstract
contour counter. The more information we store in the abstract contour
counters, the more detailed our analysis will be, but also more expensive to
calculate.

Because semantic values D̂ are now sets of procedures, when evaluating a
call expression ( f a1 . . . an), there is a set of possible procedures that f can
evaluate to, and F̂ will be called for each of them. The resulting call caches
need to be joined by pointwise set union. Similarly, the continuations of
primitive operations are sets of procedures, for all of which F̂ is called and
the results are joined, as seen in Figure 5.

2.5 Main results

These main results about the semantics functions are stated and shown in
Shivers’ dissertation:

1. The call cache returned by the exact semantics is indeed a partial map,

15



2 Taming Lambdas

2. the abstract semantics approximates the exact semantics and

3. the abstract semantics is computable.

But before starting to prove these results, Shivers establishes that the recursive
definitions he gave for F and C (and by analogy, F̂ and Ĉ) are sound. He
proceeds in the standard way of turning a recursive definitions f = F f for
a function f ∈ X, where X is a function space with a chain-complete partial
order, into a functional F : X → X. F is then shown to be continuous and
therefore has a least fixed point, which serves as the definition of f .

The need to show that the result of PR is a partial map arises from the fact
that, for an easier proof of continuity, Shivers changes the answer domain to
be

Ans = P((LAB× BEnv)× Proc).

The actual proof is only outlined in his dissertation.

In contrast, the proof that P̂R safely approximates PR is given in full detail.
For any of the types Proc, D, D∗, BEnv, VEnv, CN and CCache, he defines an
abstraction function (written | · |) from the exact type to the corresponding
abstract type. He also defines partial orders on the abstract types (here written
· / ·), expressing that one value is more specific than another value. The
main result is then

Theorem 6: For any program l, call site label c and binding envi-
ronment β, we have

|(PR l) (c, β)| / (P̂R l)(c, |β|).

The largest part of the proof is to show two similar statements relating F and
F̂ resp. C and Ĉ. Because these are mutually recursive, both statements are
shown in one big step.

The machinery to prove results about functions defined as fixed points is the
fixed point induction: A predicate P holds for the least fixed point of F if the
following three conditions are true:

• P is an admissible predicate. This is closely related to continuity and
states that if P holds for each element of an infinite chain, it holds for
the limit of the chain.

• P ⊥ holds.

• If P f is true, then P (F f ) is true.

16



2.6 Example

The computability result is not shown explicitly for P̂R, but rather for general
recursive equations of the shape

f x = g x ∪ f (r x)

where each function invocation makes a local contribution g x to the result
and then recurses with a new argument r x. Shivers shows that in that case,
the least fixed point is given by

f x =
∞⋃

i=0

g (ri x).

If additionally the argument space is finite, the infinite union is actually finite
as well and the calculation is complete after a finite number of iterations.

The semantics functions F̂ and Ĉ are nearly of this type, but they have a
branch factor greater than one. Thus, for solution to an equations like

f x = g x ∪
⋃
{ f x′ | x′ ∈ R x}

he introduces the powerset relative of a function h as h X := {h x | x ∈ X} and
transforms the above equation to

f X = g x ∪ f (R Y)

to be able to apply the previous result.

The required steps to apply this result to the mutually recursive definitions F̂
and Ĉ are not explained in the dissertation.

2.6 Example

In Figure 6 on the following page lists a functional program in continuation-
passing style, calculating the sum of the first ten natural numbers. Its code
positions are subscripted by labels which are automatically assigned by the
Haskell code presented in the following chapter. Lambda expressions have
labels 1, 3, 8, 13, 18, and 24. Call expressions, where the label is placed below
the space before the callee, are 2, 4, 9, 14, 19, 25 and 28. Labels 5 and 6 denote
the two internal call sites of the conditional expression, while labels 10 and 15
denote the internal call sites of the two primops (+).

17



2 Taming Lambdas

(ń cont.
1

let rec = (ń p i c’.
2 3

if i
4

then (ń . (+) p i (ń p’. (+) i -1 (ń i’. rec p’ i’ c’)))
5 8 9 10 13 14 15 18 19

else (ń . c’ p))
6 24 25

in rec 0 10 cont)
28

Figure 6: CPS program calculating the sum of the first ten natural numbers

A contour environment specifies for each binding position which binding,
identified by a contour counter (in this section printed in italics to distinguish
them from syntactical labels), is currently in place. The let-expression in
the above code will store the lambda expression with label 3 in the variable
environment, coupled with the contour environment

{1 7→ 0, 2 7→ 1}

indicating that the variable cont should resolve to the value bound when the
contour counter was 0 and that rec should resolve to the value bound when
the contour counter was 1. The closure is called at label 28, which adds the
following entry to the call cache calculated by the exact semantics

(28, {1 7→ 0, 2 7→ 1}) 7→ (3, {1 7→ 0, 2 7→ 1}).

The lambda expression will store the values passed as arguments using the
contour counter 2 and passes the following, extended binding environment
to call 4:

{1 7→ 0, 2 7→ 1, 3 7→ 2}.

The next call of lambda 3, from position 19, is recorded in the exact call cache
by

(19, {1 7→ 0, 2 7→ 2, 3 7→ 2, 8 7→ 4, 13 7→ 6, 18 7→ 8})
7→ (3, {1 7→ 0, 2 7→ 1}).

Now, the arguments will be stored using the contour counter 9 and call 4 is
evaluated with a binding environment of

{1 7→ 0, 2 7→ 1, 3 7→ 9},

18



2.6 Example

4 7→ {5} 14 7→ {15}
5 7→ {8} 15 7→ {18}
6 7→ {24} 19 7→ {3}
9 7→ {10} 25 7→ {Stop}

10 7→ {13} 28 7→ {3}

Figure 7: 0CFA-analysis of the example program

ensuring that the correct values of p, i and c’ will be obtained when looking
up these variables in the variable environment.

The complete exact call cache for this program contains 74 entries and we
abstain from reproducing it here. The abstract call cache obtained using the
0CFA abstraction is given in Figure 7. Since the contour environments carry
no information in this case, they are omitted. Note that the label 5 on the right
hand side of the edge 4 7→ {5} represents the whole if expression, not just the
first branch.

Applying the 1CFA abstraction, we obtain the call cache in Figure 8 on the
following page. The contour counter -1 represents the context “outside” the
analyzed program. The left hand sides of the entries, as well as closures on
the right hand side, now carry their abstracted contour environment. In this
example, it allows us to tell evaluations of the lambda expression 3 called
from position 28 apart from those called from position 19. In our case, the
gain is small as in either case we call the same procedures.

But consider the following lambda expression, which implements the function
composition operator ◦ in continuation-passing style by evaluating g, feeding
the result to f and passing evaluation on to the continuation c:

ń f g c . g (ń r. f r c)

If this function is used in two totally different contexts, a 0CFA analysis could
not tell the two apart and would add return edges from ◦ to both of them.
1CFA would annotate those edges by the context that ◦ had been called in,
and thus prevents mixing these different control flows.

But 1CFA cannot help if a commonly used function f itself calls another
function g which then calls the continuation, as the context of g is always
within f and f’s context is lost. In that example, 2CFA would be required,
and there is no general solution to this problem.
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2 Taming Lambdas
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CHAPTER 3

The Haskell Prototype

TO get a better understanding of the algorithms, we first implemented a
prototype in Haskell. As the semantics are given in denotational style,

they are easily translated into a functional program. The elements of the
syntax definition of the CPS style language are directly turned into data type
definitions, given in Figure 9 on the next page.

At this point, we slightly deviate from the original: Shivers distinguishes
the sets FUN and ARG as direct sums (cf. Figure 1 on page 10) and later
defines the functionA on the union of FUN and ARG (cf. Figure 2 on page 11).
This would be tedious and unwieldy to express in the Haskell type system,
therefore we use one set VAL instead of FUN and ARG, which does not affect
the algorithms in any notable way:

VAL ::= LAM + REF + PRIM + CONST

We also drop the special constant #f representing false from the syntax and
the corresponding value false from the set of semantic values, which are now
just the integers. The if primitive operation considers zero as false and any
other integer as true.

3.1 Type system tricks

As mentioned in the last chapter, most elements of the syntax carry a label.
These labels need to be unique and every mention of a variable needs to carry
the label of the variable’s binding position. To prevent the hypothetical user
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3 The Haskell Prototype

type Prog = Lambda

newtype Label = Label Integer
data Var = Var Label String
data Lambda = Lambda Label [Var] Call

data Call = App Label Val [Val]

| Let Label [(Var, Lambda)] Call

data Val = L Lambda

| R Label Var

| C Label Const

| P Prim

type Const = Integer
data Prim = Plus Label

| If Label Label

Figure 9: The Haskell representation of abstract syntax trees

of the library from getting the labels wrong, we exploit the smart constructor
idiom.

A type alias marks not-fully-constructed syntax tree values and prevents their
use in other functions.

newtype Inv a = Inv { unsafeFinish :: a } deriving (Show, Eq)

The deconstructor unsafeFinish :: Inv a → a is only to be used internally.

Now a value of type Inv Lambda represents a lambda expression without
correct labels. For each constructor there is a function (the smart constructor),
taking the same arguments except the label, and building the unfinished value.
We named it after the constructor it replaces, written lower case. Because
let and if are keywords in Haskell, the corresponding smart constructors are
called let and if . For example, the smart constructor for lambda expressions
is defined as

lambda :: [Inv Var] → Inv Call → Inv Lambda

lambda vs (Inv c) = Inv $ Lambda noProg (map unsafeFinish vs) c

where noProg throws, if it were evaluated, an exception:

noProg :: a

noProg = error ”Smart constructors used without calling prog”

22



3.1 Type system tricks

−− Returns the sum of the first 10 natural numbers

ex3 :: Prog

ex3 = prog $ lambda [”cont”] $

let [(”rec”, lambda [”p”, ”i”, ”c’”] $

app if

[ ”i”

, l $ lambda [] $

app plus [”p”, ”i”,

l $ lambda [”p’”] $

app plus [”i”, −1,
l $ lambda [”i’”] $

app ”rec” [ ”p’”, ”i’”, ”c’” ]

]

]

, l $ lambda [] $

app ”c’” [”p”]

]

)] $ app ”rec” [0, 10, ”cont”]

Figure 10: Example code, defined using smart constructors

There is only one function for public consumption that removes the Inv-
wrapper, with signature prog :: Inv Lambda → Prog. It uses a state monad to
hand out unique labels and keeps track of variable bindings to correctly set
the reference to the binding position.

For additional convenience, we made the types Var, Val and Inv a instances
of the IsString type class which allows the compiler, if the language extension
OverloadedStrings is enabled, to turn string literals into values of these kinds.
Using the same trick, a Num-instance for Val allows to enter constants directly
as literal numbers.

A simple example program, returning the result of the worldshaking calcula-
tion 1 + 1, can now entered as

ex2 :: Prog

ex2 = prog $ lambda [”cont”] $

app plus [1, 1, ”cont”]

instead of the much verbose
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3 The Haskell Prototype

(ń cont.

let rec = (ń p i c’.

if i

then (ń . (+) p i (ń p’. (+) i -1 (ń i’. rec p’ i’ c’)))

else (ń . c’ p))

in rec 0 10 cont)

Figure 11: Pretty-printed output

ex2 :: Prog

ex2 = Lambda (Label 1) [Var (Label 1) ”cont”] $

App (Label 2) (P (Plus (Label 3))) [

C (Label 4) 1,

C (Label 5) 1,

R (Label 6) (Var (Label 1) ”cont”)].

A larger example is included in Figure 10 on the preceding page, where the
first ten natural numbers are added up.

3.2 Pretty Printing

Another feature of the Haskell prototype is pretty-printing of an abstract syn-
tax tree. It uses the standard pretty printing library of Haskell [5] and renders
the above example to the string “(ń cont. (+) 1 1 cont)”. Figure 11 shows
the pretty printed presentation of the program in Figure 10 on the preceding
page.

Also, a conversion function is included that renders a program in the syntax
used by Isabelle, to make it more convenient to obtain example programs
within Isabelle.
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CHAPTER 4

The Isabelle Formalization

THE main mission of this student research project was to implement
Shivers’ algorithms in the theorem prover Isabelle[2] and to prove his
main results as introduced in Chapter 2. Shivers was already very

rigorous and formal in his proofs, which helped a lot in the course of this
project. The main hurdles to take were

• representing partial functions, such as the semantics functions, in Is-
abelle within the default logic HOL, which is a logic of total functions,
and

• obtaining the fact that the set of subterms of a program is finite.

4.1 Structure

I separated the formalizations into several files (called theories in Isabelle-
speak). Their dependencies are given in Figure 12 on the next page, where
theories in rectangles contain definitions, boxed theories contain the main
results and theories in rounded rectangles contain auxiliary definitions and
lemmas. The definitional theories have directly corresponding counter-parts
in the Haskell prototype. The following list gives a quick summary of their
content.

CPSScheme contains the definitions of the abstract syntax to represent the
functional programs. The types (Figure 13 on page 27) are very similar
to those in the Haskell prototype (Figure 9 on page 22).

Eval is an implementation of the standard semantics.
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4 The Isabelle Formalization

Computability

SetMap

Utils

AbsCFComp

ExCFSV

ExCF

FixTransform

Eval

HOLCFUtils

AbsCF

AbsCFCorrect

CPSScheme

MapSets

CPSUtils

Figure 12: Isabelle theories and their dependencies
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4.1 Structure

types label = nat

types var = label × string

datatype prim = Plus label | If label label

datatype lambda = Lambda label var list call
and call = App label val val list

| Let label (var × lambda) list call
and val = L lambda | R label var | C label int | P prim

types prog = lambda

Figure 13: Isabelle data types

ExCF is an implementation of the exact nonstandard semantics.
AbsCF is an implementation of the abstract nonstandard semantics.

ExCFSV proves that a call cache returned by the exact nonstandard semantics
is indeed a partial map.

AbsCFCorrect proves that the abstract nonstandard semantics safely approxi-
mate the exact nonstandard semantics.

Computability contains Shivers’ general treatment of equations whose least
solution is computable.

AbsCFComp applies the results from the previous theory to the abstract non-
standard semantics. This step was skipped by Shivers.

Utils is a potpourri of various lemmas not specific to our project, some of
which could very well be included in the default Isabelle library.

HOLCFUtils contains generic lemmas related to the use of HOLCF, a domain
theory extension to Isabelle.

CPSUtils defines sets of subterms for programs and proves their finiteness.
FixTransform transforms fixed point expressions defining two mutually recur-

sive functions to fixed point expressions defining a single function.
SetMap contains functions and lemmas to work with set-valued maps.
MapSets defines sets of functions and sets of maps, and shows the finiteness

of such maps, if their domains and ranges are finite.
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4 The Isabelle Formalization

4.2 Domain theory in Isabelle

Generally it is straight-forward to transform functional code, such as the
Haskell prototype, into Isabelle. For total functions, the function package[7]
provides a great deal of convenience, such as automatic termination proofs,
overlapping patterns in the defining equations and mutual recursion. Unfor-
tunately, the important functions that we would like to define, F and C, are
not total functions: For non-terminating programs they recurse endlessly.

The function package has some support for partial functions using the dom-
intros option, which introduces a termination predicate that then appears in
the premises to any lemma about the functions. This turned out to be a major
restriction when we formalized the functions in that setting and we looked
for alternatives.

Shivers handles the issue using the machinery of domain theory, where
functions defined by recursive definitions are obtained by constructing a
functional on the space of function, proving that it is continuous and then
taking the least fixed point of the function as the desired definition. The
HOLCF-package[8], which is an extension to the standard Higher Order Logic
(HOL) of Isabelle, provides the necessary definitions to work with domain
theory in Isabelle.

A simple example for a function defined by recursion would be the func-
tion f : N → N that gives final value in the Collatz series starting with its
argument:

f (n) :=


1, if n = 1
f (n

2 ), if n is even
f (3 · n + 1), otherwise.

Defining this function with the function package would be very difficult, as
we either had to prove that it is total, thereby proving the Collatz conjecture,
or work with the inconvenient domain predicates generated by the domintros
option.

Within HOLCF, we can define the function f as the least defined function
fulfilling the above property. To be able to do so, the function space needs
to have a chain-complete partial order. We therefore extend the range of
the function by the special value ⊥ to indicate undefinedness. Now f is the
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4.2 Domain theory in Isabelle

theory Collatz imports HOLCF begin

fixrec f :: nat discr→ nat lift
where f ·n = (if undiscr n = 1 then

Def 1
else if even (undiscr n) then
f ·(Discr ((undiscr n) div 2))

else
f ·(Discr (3 ∗ undiscr n + 1)))

lemma f ·(Discr 42) = Def 1 by simp
end

Figure 14: Function definitions with HOLCF

least fixed point f = fix(F) under a functional F : (N→ N⊥) → (N→ N⊥)
derived from the above specification:

F( f ) := λn.


1, if n = 1
f (n

2 ), if n is even
f (3 · n + 1), otherwise.

The least fixed point exists and is unique if F is continuous, i.e. if it is
monotonous and preserves limits of chains.

HOLCF relieves the user from the burden of transforming the recursive equa-
tions into a functional by offering the fixrec command, which is demonstrated
in Figure 14. This command turns a recursive function definition or several
mutually recursive function definitions internally into a functional, defines the
function as the fixed point and proves simplification and induction lemmas
for the function.

By default, no partial order is defined for N, because there is more than one
sensible choice. To tell the system which order to use we use the wrapper
discr for the discrete ordering, with conversion functions Discr and undiscr,
and Lift for the ordering with one additional element denoting bottom, with
constructor Def.

A lemma such as f (42) = 1 would not be shown as easy as in Figure 14 if we
had used the function package with the domintros option, as the termination
predicate had to be proven first.
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4 The Isabelle Formalization

Clearly, HOLCF is the right choice to define our semantics function. In this
case, the domain is a set. In Isabelle, sets over a type ’a are just functions ’a
⇒ bool. In the theory HOLCFUtils, we therefore defined a partial order on
bool, with false @ true, to obtain the usual order on sets, where A v B ⇐⇒
A ⊆ B. For the integers, which occur as labels in the return value, contour
counters and types from the syntax definition, the discrete order is defined.
The arguments to the C and F functions are uncurried, i.e. written as one
quadruple, and wrapped in Discr. This way, all occurring types have a partial
order and HOLCF can work with them.

As mentioned before, least fixed points exist if the functional is continuous.
The fixrec command hides this from the user by automatically proving con-
tinuity if the functional is defined using continuous building blocks. If this
is not sufficient, an error message is shown which contains the remaining
continuity goal and the user can add new rules to the set used by fixrec,
named cont2cont. In our case, continuity lemmas for booleans and sets were
helpfully provided by Brian Huffman, and we wrote continuity lemmas about
case expressions for our custom data types.

4.3 Fixed point induction

The main method to show results about a least fixed point is the fixed point
induction, as explained on page 16. This technique was used both to obtain
that the exact semantics return a partial map and that the abstract seman-
tics safely approximate the exact semantics. Again, HOLCF provides some
machinery to show the admissibility criterion without much effort.

The Isabelle formalization of the correctness result, Lemma 6, and the two
main stepping stones to prove it, Lemmas 8 and 9, are printed in Figure 15.
These two lemmas need to be proven at once due to the mutual recursive
definitions ofF and C resp. F̂ and Ĉ. The lemma relates two fixed points: One
for the exact semantics and one for the abstract semantics. Shivers proceeds
by parallel fixed point induction, which, in order to relate fixed points of two
functionals F and G, requires relating ⊥ and ⊥, then assuming that f and g
relate and showing that F f and G g relates. In our case of the approximation
relation, this can be simplified: We use fixed point induction for fixed point of
the exact semantics function and hold the abstract semantics fixed. The proof
proceeds by explicit case analysis of the argument vectors of F and C, fstate
and cstate.
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4.4 Finiteness of subexpressions

lemma lemma89:
fixes fstate-a :: ′c::contour-a f̂ state and cstate-a :: ′c::contour-a ĉstate
shows |fstate| / fstate-a =⇒ |F·(Discr fstate)| / F̂ ·(Discr fstate-a)
and |cstate| / cstate-a =⇒ |C·(Discr cstate)| / Ĉ·(Discr cstate-a)

lemma lemma6: |PR l| / P̂R l

Figure 15: The final correctness result and the main lemma to proof it

A disadvantage of the fixed point induction is that it is not possible to use
auxiliary lemmas about the function: While proving the inductive case, one
does not show results for the function in question, but for an information-
theoretical approximation. Thus, any previously shown results are not avail-
able. Therefore, the inductions of the auxiliary lemmas have to be intertwined
with the induction of the main result.

In our case, we had to resort to this measure in the proof that the call cache
returned by the exact semantics is a partial map, in theory ExCFSV: The
auxiliary lemma stated that if b is the contour pointer passed to F resp.
C, then every contour environment in the returned call cached mentions a
contour counter greater or equal to b, and inductively assumes that for F , b is
strictly larger than all contour counters occurring in the arguments to F and
for C the contour counter b occurs in the contour environment passed to C and
is larger than all contour counters occurring in the arguments to C. The main
lemma just states that the call cache is a partial map, which corresponds to
the predicate single-valued from the Isabelle library. The resulting intertwined
lemma, as defined in Isabelle, is shown in Figure 16 on the next page.

The proof itself again proceeds by case-analysis of the arguments. Each case
is handled explicitly, as the automation present in Isabelle could not solve the
goals directly.

4.4 Finiteness of subexpressions

For the computability proof, we need the fact that the set of subexpressions of
a program is finite. This lemma, although obvious, turned out to be tricky to
prove. One complication arises from the fact that there are subexpressions of
various types in a program – calls, lambdas, variables, values, labels, primitive
operations – some of which are mutually recursive.
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4 The Isabelle Formalization

lemma cc-single-valued ′:
[[ ∀ b ′∈ contours-in-ve ve. b ′< b
; ∀ b ′∈ contours-in-d d. b ′< b
; ∀ d ′∈ set ds. ∀ b ′∈ contours-in-d d ′. b ′< b
]]

=⇒
( single-valued (F·(Discr (d,ds,ve,b)))
∧ (∀ ((lab,β),t) ∈ F·(Discr (d,ds,ve, b)).
∃ b ′. b ′∈ ran β ∧ b ≤ b ′)

)

and [[ b ∈ ran β ′

; ∀ b ′∈ran β ′. b ′≤ b
; ∀ b ′∈ contours-in-ve ve. b ′≤ b
]]

=⇒
( single-valued (C·(Discr (c,β ′,ve,b)))
∧ (∀ ((lab,β),t) ∈ C·(Discr (c,β ′,ve,b)).
∃ b ′. b ′∈ ran β ∧ b ≤ b ′)

)

lemma evalPR-single-valued:
single-valued (PR prog)

Figure 16: Intertwined fixed point inductions and the final main result

Our first approach was to define the set of subexpressions by a recursive
function that calls itself for the immediate subexpressions of the argument,
joins the results and inserts the argument. Using the induction rule for this
function, the finiteness of the resulting set is easily shown. Unfortunately, we
also need lemmas about how these sets relate: If we have a lambda expression
and know that it is in the set of lambdas of a program, then we need to know
that the call within the lambda expression is in the set of calls of this program.
Because the two sets are generated independently, this lemma required a full-
fledged induction over the syntax tree. The induction rule for the mutually
recursive types lambda, call and val also requires special hypotheses for the
occurrences of the types which are wrapped in lists, such as the list of bindings
in a Let expression. So although we are only interested in the seemingly trivial
fact Lambda l vs c ∈ lambdas x =⇒ c ∈ calls x, the complicated proof shown
in Figure 17 on page 34 is required. We had to add 12 such lemmas, which
fortunately were all provable by only slight variations of the apply script in
the figure.
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4.4 Finiteness of subexpressions

A much cleaner approach would be a combined definition of the sets of
subexpressions in one inductive-set, which could be defined by exactly the
12 lemmas mentioned above. The downside of that approach is that the
finiteness of these sets turned out to be hard to come by.

Under the hood inductive-set works very similar to fixrec as it defines the
resulting set as the least fixed point of a functional. Because sets form a
complete lattice, only monotonicity of the functional is required and proven
automatically. Our second approach was now to create a generally applicable
lemma where such a functional F gives rise to a finite set. The conditions for
finiteness are

• Monotonicity of the functional, which can be proven mechanically.

• Finiteness preservation, i.e. if S is finite, then F S is also finite.

• Descending measure of new elements: Each element x ∈ FS \ S is either
added unconditionally (x ∈ F {}), or there is an element y ∈ S such
that s(x) < s(y) for some natural-valued measure function s (usually
Isabelle’s size function).

We proved this lemma but then ran into a dead end when we found out that
the implementation of the inductive-set command treats mutually recursive
sets by constructing a single intermediate fixed point and defining each set as
a projection thereof. The construction happens to be such that the large set is
infinite, preventing our approach from succeeding. The infinite fixed point
could have been avoided by modifying the construction within inductive-set
slightly.

A third approach was suggested to us by Andreas Lochbihler. Here, subex-
pressions of any type are assigned a position, which is a list of natural num-
bers. The set Pos p of valid positions in the program p is defined using
function and finiteness is shown easily and automatically. A partial function
subterm of type

lambda + call + val⇒ pos ⇀ lambda + call + val

is defined, mapping a valid position to the corresponding subexpression.
We show that the inductively defined sets of subexpressions are subsets of
the range of subterm, by an explicit inductive proof, and thus obtained the
finiteness of these sets. This approach required about 40% more lines of code
for the sets of lambdas, calls and values (which are the mutually recursive
ones) than the first approach, but is cleaner and would scale better.
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lemma
fixes list2 :: (var × lambda) list and t :: var×lambda
shows lambdas1: Lambda l vs c ∈ lambdas x =⇒ c ∈ calls x
and Lambda l vs c ∈ lambdasC y =⇒ c ∈ callsC y
and Lambda l vs c ∈ lambdasV z =⇒ c ∈ callsV z
and ∀ z∈ set list. Lambda l vs c ∈ lambdasV z −→ c ∈ callsV z
and ∀ x∈ set (list2. Lambda l vs c ∈ lambdas (snd x) −→ c ∈ calls (snd x)
and Lambda l vs c ∈ lambdas (snd t) =⇒ c ∈ calls (snd t)

apply (induct rule:lambda-call-val.inducts)
apply auto
apply (case-tac c, auto)[1]
apply (rule-tac x=((a, b), ba) in bexI, auto)
done

Figure 17: One of 12 unwieldy proofs to relate two sets of subexpressions

4.5 Finishing the computability proof

As mentioned on page 17, Shivers shows the computability only abstractly for
a single recursively defined function, and leaves it to the reader to generalize
this to mutually recursive functions. We carried this step out in detail. To
do so, we need to transform a fixed point for two functions (implemented in
HOLCF as a fixed point over a tuple) to a simple fixed point equation. The
approach here works as long as both functions in the tuple have the same
return type, using the isomorphisms

(A→ X)× (B→ X)� (A + B)→ X

( f , g) 7→
(

x 7→
{

f a, if ιA a = x
g b, if ιB b = x

)
(h ◦ ιA, h ◦ ιB)← [ h

where ιA : A→ A + B and ιB : B→ A + B are the injection functions.1

In theory FixTransform we showed that a fixed point can be transformed using
any retractable continuous function:

g ◦ f = id =⇒ fix(F) = g(fix( f ◦ F ◦ g))

1Interestingly, by using the familiar notation XA for the set A → X, this corresponds to
the well-known law about exponentiation XA · XB = XA+B. In fact, this holds in any
bicartesian closed category. But now I am talking abstract nonsense.
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lemma args-finite:
finite (

⋃
i. iterate i·(abs-R)·{initial-r prog})

lemma a-evalCPS-iterative:
P̂R prog = abs-g·(⋃ i. iterate i·(abs-R)·{initial-r prog})

Figure 18: Computability results as expressed in Isabelle

and used this with the functions that convert between the tuple of functions
and the combined function to transform fixed points as required. In theory
AbsCFComp, this these results are applied to Ĉ and F̂ and combined with
Shivers abstract computability lemmas. We obtain the two lemmas given in
Figure 18, where initial-r is the initial argument to F̂ as set up in P̂R, abs-R
gives, for an argument, the set of arguments the semantics functions recurse
to and abs-g calculates the call cache entries for one such argument.

4.6 Cosmetics

We tried to follow Shivers very closely not only in substance but also in pre-
sentation. Isabelle is already good in generating documents from its theories
that resemble common mathematics notation very closely. We employed
some tricks to increase similarity with Shivers’ dissertation.

Functions in Isabelle need to have an alphanumeric name. Shivers calls his
function by symbols (F , Ĉ,. . . ). To achieve this, we assign the symbol a
syntax translations. So the evaluation function for lambdas is called evalF, but
Isabelle also understands the code \<F> which is by default set up to render
as F . We use the alternative symbol throughout the code and real name evalF
only appears in the definition and when referencing lemmas generated by
function.

Shivers uses some symbols that do not exist as predefined Isabelle symbols,
e.g. F̂ or P̂R. In that case, we “invent” the symbol by writing \<aPR> and
adding an appropriate definition for the LATEX command \isasymaPR to our
document.

A similar definition is used for the power-set function used in the com-
putability proof. Shivers denotes it by underlining the argument. This was
achieved by a syntax translation \<^ps> and a corresponding LATEX command
\isactrlps, defined to be {\uline #1}.
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In the proof about the safe approximation of F̂ and Ĉ, two symbols are used
overloaded: The abstraction functions | · | and the approximation relations
/. This is per se not a problem, as Isabelle allows for ambiguous syntax
translations. In that case, it generates more than one parse tree and picks the
(hopefully unique) tree that typechecks.

Unfortunately, this does not work well in our case: There are eight concrete
functions which we want to write as | · | and some expressions have multiple
occurrences of these, causing an exponential blow-up of combinations.

Luckily, the latest development version of Isabelle contains a module by
Christian Sternagel and Alexander Krauss for ad-hoc overloading, where the
choice of the concrete function is done at parse time and immediately, based
on the argument types. Using this system, we were able to write | · | and /
just as Shivers did.

4.7 Development Environment

The most common development environment for working with Isabelle the-
ories is ProofGeneral, an extension to the text editor Emacs. Unless one is
already familiar with Emacs, learning it in addition to Isabelle might not be
desired.

One of the alternatives is the relatively young project i3p[4], which provides
a similar feature set based on the Netbeans frameworks and thus offers a
fairly standard user experience. Over the course of the project, we have found
and reported some minor bugs and reported these to the author, who then
released new versions.

A more severe problem was observed with proofs involving large goal state:
i3p, in contrast to ProofGeneral, reads the goal state after each command to
allow the user to read earlier goal states without having to re-evaluate the
theory. This is a noticeable improvement of usability. Unfortunately, it is
quite expensive to print large Isabelle goal states, as they are run through
various stages of syntax translations. Some theories become unbearable slow
to evaluate and in some cases, we employed workarounds to avoid large
goal states. But also for this issue the author found a solution and the latest
version of i3p now uses lazy goal states, which means that goal states are only
generated by Isabelle when they are actually displayed by i3p. The overhead
for remembering the earlier goal states within Isabelle is low, thanks to the
efficient sharing of values in pure functional languages.
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CHAPTER 5

Towards Slicing

AS mentioned in the introduction, this student research project was
motivated by Daniel Wasserrab’s work on a formally verified and
programming language agnostic framework for slicing. Slicing an-

swers the question: Which parts of the program affect a specific statement.
Wasserrab mentions several uses for Slicing, such as debugging, testing and
verifying software security algorithms.

To instantiate his framework for our functional programming language, we
have to transform a program into a control flow graph (CFG) containing
semantic information. An instantiation has to provide types for the program
state (state), for edges (edge), nodes (nodes), variables (var), values (val) and
definitions for the following functions:

• A predicate valid-edge :: edge⇒ bool, defining the set of edges in the CFG.

• Two functions source, target :: edge ⇒ node, indicating the nodes con-
nected by an edge.

• A function kind :: edge⇒ state edge-kind which gives the kind of an edge.
An edge is either an updating edge, written ⇑f for a function f :: state⇒
state, or an assertion edge, write (Q)√ for a predicate Q :: state⇒ bool.

• A special node (-Entry-) indicating the entry node.

• Two sets of variables Use, Def :: node⇒ var set which list, for each node,
the variables that are used resp. written to when executing this node.

• A function state-val :: state ⇒ var ⇒ val, obtaining the value of the
variable for a given program state. The framework does not actually
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work with values, but it uses this function to make statements about
changing or unaltered parts of the program state.

These definitions are expected to fulfill certain properties, where edge always
refers to a valid edge:

• No edge has the entry node as a target.

• There are no multi-edges, e.g. any edge is uniquely determined by its
source and target node.

• The entry edge has empty Def and Use sets.

• Evaluating an edge does not change the value of any variable not men-
tioned in its source node’s Def set.

• If all variables in the Use set of a node are equal in two states s and s ′,
then all variables in the Def set are equal in the resulting states after
evaluating an edge from that node.

• Similarly, if all variables in the Use set of a node are equal and an
assertion edge from that node would allow traversal in one state, it
would also allow traversal in the other state.

• The graph is deterministic, i.e. if two different edges have the same
starting node, they are assertion edges whose predicate are mutually
exclusive.

Wasserrab optionally introduces special exit nodes, which we skip in this
treatment.

5.1 Instantiation

The following documents a plan to instantiate the above definitions for our
functional programming language. We have not fully put this into practice.

The first step is to consider the types node and state. A node together with a
state clearly has to carry all information needed to continue evaluating the
program. Comparing this with our (standard) semantics functions F and C,
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we see that node × state have to correspond to fstate + cstate, the disjoint sum
of the arguments vectors:

fstate = d × d list × venv × contour
cstate = call × benv × venv × contour

The question now is how to distribute these elements on node and state.
Our approach is to put all syntactical information, e.g. expressions already
occurring in the syntax tree of the program, into the nodes and the rest into
the state. This is a natural choice considering that for imperative programs
nodes correspond to statements of the program code.

Clearly, call is syntactical. A semantic value of type d is either a closure, a
primitive operation, the special value Stop or an integer value. Integers values
can not occur as the first argument to F . Primitive operations are syntactical
and will be put into the node. Stop is not a subexpression of the program,
but still has a syntactical touch to it, so this will also be put into the node. A
closure is a pair lambda × benv, where the lambda expression is syntactical
and the binding environment dynamic. Thus the former goes into the node
and the latter into the state. In the end, we reach these definitions:

node = lambda + prim + {Stop} + call
state = venv × d list × benv × contour

These types are actually redundant: For example, a node for a primitive
operation does not expect a binding environment. In that case, the arguments
will just be looped through unaltered. This actually improves the instantiation,
as it keeps the Def sets as small as possible.

We also need a special node as the entry node, containing the full program.
This leads to Isabelle type definitions printed in Figure 19 on the following
page. Note that the type is actually named synNode, for reasons explained in
the following.

Having thus defined nodes, we turn to the edges of our graph. One would
think that these can just be pairs of syntactical nodes, being traversed if the
control flow passes from one node to the other, updating the state in doing
so. This is not directly possible, as the slicing framework differs between
assertion edges and update edges.

We therefore have to split the edge into two, and introduce an intermediate
node. Instead of the single edge

node1 :: synNode −→ node2 :: synNode
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5 Towards Slicing

types state = venv × d list × benv × contour

datatype synNode
= StartNode prog
| StopNode
| LambdaNode lambda
| PrimNode prim
| CallNode call

datatype node
= SynNode synNode
| GuardNode synNode synNode

types edge = node × node

datatype cfgVar =
Vvar var
| Vds
| Vβ

| Vcnt

datatype cfgVal =
VLvar contour ⇀ d
| VLds d list
| VLβ benv
| VLcnt contour

Figure 19: Isabelle types for the instantiation of the slicing framework

an evaluation step is represented by the two edges

SynNode node1
(Q)√
−→ GuardNode node1 node2

⇑f−→ SynNode node2

where the first arrow represents the assertion edge stating “the control flow
passes onto node2” and the second arrow represents the update edge which
actually modifies the state.

The next types to define are the variables and values. To distinguish these
from the definitions in the semantics theory, we will call the type for the
CFG instantiation cfgVar and cfgVal. Although not directly obvious from the
conditions listed above, the complete state has to be accessible via state-val to
obtain a successful instantiation. Therefore, the set of variables in the graph
consists of the set of variables in our program, plus special variables for the
argument vector, the binding environment and the contour number in the
state vector. The type cfgVal has corresponding constructors. Because the
variable environment is actually a partial map from variable/contour pairs
to semantic values, the value in the CFG of a variable is a partial map from
contour to semantic values. The resulting datatype definitions can be seen in
Figure 19. The implementation of state-val follows immediately.

It remains to define suitable Def and Use sets. SynNodes need to have an
empty Def set, as they are the origins of assertion edges. A trivially correct
choice for the other sets would be UNIV::cfgVar, the set of all variables. But
this would not lead to any useful results. Therefore, the sets have to be cut
down as far as possible. For example, the node representing a call expression
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5.2 A Small Step Semantics

( f a1 . . . an) would have a Def set of {Vds, Vβ, Vcnt}, as it sets the argument
vector, pass a contour environment if f happens to evaluate to a closure, and
update the contour counter, but does not modify the variable environment.
Its Use set would encompass {Vβ, Vcnt} plus variables for each reference
among { f , a1, . . . , an}.

5.2 A Small Step Semantics

The edges of the CFG are yet to be given their semantic meaning. The model
of the CFG as expected by the framework is reminiscent of a small step
semantics. Therefore, it would be helpful to have such a semantics. We can
easily derive it from the the equations of the denotational semantics, as they
are tail recursive, by tracing their arguments of type fstate + cstate (which
corresponds to synNode × state) as the recursion runs. If we denote with
〈n : s〉 ⇒ 〈n′ : s′〉 the fact that evaluating the node n in state s step to node n′

in state s′, the rule for call expressions would read:

〈CallNode (App lab f vs) : (ve, ds, β, b)〉

⇒


〈LambdaNode l : (ve, ds′, β′, nb b)〉, if A f ve β = DC l β’
〈PrimNode p : (ve, ds′, β, nb b)〉, if A f ve β = DP p
〈StopNode : (ve, ds′, β, nb b)〉, if A f ve β = Stop

where ds′i = A vsi ve β. Note how the argument vector ds in the starting
state is not used, and how the binding environment stays untouched un-
less the procedure f evaluates to a closure which carries its own binding
environment.

The rule for the special StartNode would ignore the given state and set up the
initial state:

〈ProgNode prog : state〉 ⇒ 〈LambdaNode l : (empty, [Stop], empty, b0)〉

and no rule would further evaluate the StopNode, which thus becomes the
terminal node.

We use this semantics to fill our graph edges with life: The assertion edge
from node n towards n′ will carry the predicate which is true for a state s if
and only if 〈n : s〉 ⇒ 〈n′ : s′〉 for some state s′, and the update edge will set
the state to just this s′.
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5 Towards Slicing

It should be possible to prove the equality of the two semantics, i.e.

PR prog = i
⇐⇒

〈StartNode prog : ( , , , )〉 ⇒∗ 〈StopNode : ( , [i], , )〉

where i is the result of the evaluation, ⇒∗ the transitive hull of ⇒ and
denotes arbitrary values.

5.3 Connecting to Shivers

If that could be done, a similar proof will relate the small step semantics with
the exact nonstandard semantics: For each step in the series 〈n : s〉 ⇒ 〈n′ : s′〉,
if n′ is not a CallNode, we find a corresponding entry in the call cache returned
by the nonstandard semantics function PR. Call caches are of the type
(label× benv ⇀ d). The label identifies a subexpression of the program, and
thus a synNode. The binding environment is ignored for this purpose. The
semantic value d contains a procedure and hence can be identified with a
synNode.

We have shown that the call cache returned by P̂R is a safe approximation
to the exact call cache. Therefore, we will find corresponding entries there
as well. By the converse argument we see that it suffices to feed such edges
to the slicing framework that we can statically derive using Shivers’ abstract
nonstandard semantics. This will make the constructed graph considerably
smaller and thus more exact, and we hope this allows for a more powerful
analysis.

5.4 Hopes and Fears

The result of a slicing analysis is, given a node that we are interested in, a
set of nodes that do not affect our node. In an imperative language, this
would allow us to replace the statements which correspond to these nodes by
no-op statements without affecting the statement which corresponds to our
interesting node.

In our functional, continuation-passing style language, it is not so clear how to
interpret the result of the analysis. Clearly, we cannot just replace such nodes
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5.4 Hopes and Fears

with no-ops, as that would halt evaluation altogether. It might be possible to
omit the variable bindings or argument vector setting in such nodes and then,
in a post-processing step, collapse call-lambda-pairs where no arguments are
passed and no variables are bound.

A problem in the implementation we suggested in this chapter could be
caused by our treatment of the contour counter, represented by the graph
variable Vcnt. Every node reads it, and almost all nodes increase it. This
could cause a lot of unwanted dependencies between the nodes, rendering
the slicing analysis worthless.

For a possible remedy additional nodes could be inserted in the graph whose
only effect is to increase the contour counter and thus removing Vcnt from the
other nodes’ Def sets. We expect that these contour nodes are never removed
by slicing, and that these would only depend on other contour nodes plus
potentially nodes which represent conditional statements.

A similar problem is posed by the binding environment in the graph variable
Vβ, which is also written by each lambda expression and used by each call
expression. Again, dedicated nodes could avoid having Vβ in the Def sets of
lambda expressions.

The combination of a call and a lambda expression is roughly equivalent to
an assignment statement in an imperative language. Combining these in
one step, we can remove the argument vector variable Vds from our scheme
and split the assignment of individual arguments into separate nodes. This
would avoid unnecessary dependencies between the loop counter and the
loop accumulator in a loop implemented by a recursive function.

Splitting the binding environment into a set of graph variables, one per
binding position, should be considered. It is not clear whether this will
improve the representation without further modifications, as the evaluation of
a lambda expression to a closure bundles the complete binding environment,
which requires all of these graph variables to appear in the Use and Def set of
a call.

In Section 2.6 the problems of the 0CFA-abstraction in the presence of higher
order functions such as ◦ are mentioned. These also occur here and would
lead to unwanted edges in the control graph. A transformation that allows to
use the additional information provided by 1CFA is tricky, though, as binding
environments do not occur in the static part of the graph. A possible solution
is to duplicate nodes, once per context identified by the 1CFA-abstraction, at
the cost of an increased graph.
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5 Towards Slicing

Node Use Def

Start ∅ UNIV

1 {Vds, Vβ, Vcnt} {Vβ, Vvar c}

2 {Vβ, Vcnt} {Vds, Vcnt}

3 {Vds, Vβ, Vcnt} {Vβ, Vvar x}

4 {Vβ, Vcnt, Vvar c} {Vds, Vcnt}

Stop {Vds}

Figure 20: Naı̈ve instantiation

5.5 Example

The smallest example of a program with obviously useless instructions would
be the following code:

(ń c. (ńx. c 1) 0).
1 2 3 4

Figure 20 contains the naive call graph without any of the modifications in
the previous section. The program’s control flow is purely linear, denoted
by down-pointing edges. Edges in the other direction denote dependencies
between the nodes. The intermediate nodes which we added per edge to
fulfill the framework’s requirements are not shown.

In this form, every node influences the final node and we do not obtain any
useful information from the slicing analysis. In Figure 21, we improved the
instantiation by introducing special nodes to update the contour counter Vcnt
resp. the contour environment Vβ. The figure contains only the dependency
arrows relevant in the analysis of the stop node.

In this case, the analysis provides a useful result: The nodes 2 and 3, represent-
ing the useless call and the useless lambda, do not influence the Stop node.
The corresponding extra nodes are still in the set of depending nodes. In that
sense, they form the skeleton of the program flow and are never removed by
slicing.
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Node Use Def

Start ∅ UNIV

1 {Vds, Vcnt} {Vvar c}

1β {Vβ, Vcnt} {Vβ}

2 {Vβ} {Vds}

2cnt {Vcnt} {Vcnt}

3 {Vds, Vcnt} {Vvar x}

3β {Vβ, Vcnt} {Vβ}

4 {Vβ, Vvar c} {Vds}

4cnt {Vcnt} {Vcnt}

Stop {Vds}

Figure 21: Improved instantiation
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CHAPTER 6

Conclusion

WE have successfully formalized Olin Shivers’ control flow analysis
for functional programming languages and proven it correct. We
employed the theorem prover Isabelle and chose the logic package

HOLCF to base our work on. This turned out to be the right choice for the
implementation of denotational semantics.

The formalization was, for the greatest part, straight forward. Where it was
not, it was still possible to obtain the desired results, after some experimenta-
tion. Altogether, we were satisfied with the Isabelle system.

We outlined a possible connection to Daniel Wasserrab’s framework for for-
mally verified slicing, discussed its problems and possible remedies. By a
simple example, we showed that such a slicing analysis can indeed be useful
when applied to functional programs.

It would be interesting to put this plan into practice and implement an instan-
tiation of the slicing framework for functional languages. One of the large
open questions here is how to interpret the results obtained by the slicing
analysis.
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