
A Haskell Roadshow

Joachim Breitner

January 20th 2011



⊗��������
Features

�
Demonstration

���
Conclusion

What are Haskell’s features

It is a functional language

It is pure, i.e. side effect free

It employs lazy evaluation

It is strongly typed with type inference

It can be interpreted or compiled

Large number of libraries available centrally

A Haskell Roadshow Joachim Breitner



⊗��������
Features

�
Demonstration

���
Conclusion

What are Haskell’s features

It is a functional language

It is pure, i.e. side effect free

It employs lazy evaluation

It is strongly typed with type inference

It can be interpreted or compiled

Large number of libraries available centrally

A Haskell Roadshow Joachim Breitner



⊗��������
Features

�
Demonstration

���
Conclusion

What are Haskell’s features

It is a functional language

It is pure, i.e. side effect free

It employs lazy evaluation

It is strongly typed with type inference

It can be interpreted or compiled

Large number of libraries available centrally

A Haskell Roadshow Joachim Breitner



⊗��������
Features

�
Demonstration

���
Conclusion

What are Haskell’s features

It is a functional language

It is pure, i.e. side effect free

It employs lazy evaluation

It is strongly typed with type inference

It can be interpreted or compiled

Large number of libraries available centrally

A Haskell Roadshow Joachim Breitner



⊗��������
Features

�
Demonstration

���
Conclusion

What are Haskell’s features

It is a functional language

It is pure, i.e. side effect free

It employs lazy evaluation

It is strongly typed with type inference

It can be interpreted or compiled

Large number of libraries available centrally

A Haskell Roadshow Joachim Breitner



⊗��������
Features

�
Demonstration

���
Conclusion

What are Haskell’s features

It is a functional language

It is pure, i.e. side effect free

It employs lazy evaluation

It is strongly typed with type inference

It can be interpreted or compiled

Large number of libraries available centrally

A Haskell Roadshow Joachim Breitner



�⊗�������
Features

�
Demonstration

���
Conclusion

Haskell, a Functional language

Functions are first-class citizens, e.g. can be passed to other
functions (“higher order functions”).

Re-use of programing structure, separation of program flow
and program logic.

Example: Modifying each value in a linked list.

A Haskell Roadshow Joachim Breitner



��⊗������
Features

�
Demonstration

���
Conclusion

Haskell, a Functional language

Example: Modifying each value in a linked list.

Dysfunctional code

for (list i = a; i.next != NULL; i = i.next) {
i.value = i.value + 1;

}
...
for (list i = b; i.next != NULL; i = i.next) {

i.value = i.value ∗ 2;
}

A Haskell Roadshow Joachim Breitner



��⊗������
Features

�
Demonstration

���
Conclusion

Haskell, a Functional language

Example: Modifying each value in a linked list.

Functional code

modifyEach f [] = []
modifyEach f (x:xs) = f x : modifyEach f xs
...
modifyEach (\v −> v + 1) a
...
modifyEach (\v −> v ∗ 2) b

A Haskell Roadshow Joachim Breitner



���⊗�����
Features

�
Demonstration

���
Conclusion

Haskell, a pure language

Variables do not represent memory locations, but values.
=⇒ not assigned, but bound; no modifications.

Functions are functions in the mathematical sense
=⇒ for identical paramters, identical results are calculated.

(“Referential transparency”).

. . . but we can still do useful things!

Example: Factorial numbers

A Haskell Roadshow Joachim Breitner



���⊗�����
Features

�
Demonstration

���
Conclusion

Haskell, a pure language

Variables do not represent memory locations, but values.
=⇒ not assigned, but bound; no modifications.

Functions are functions in the mathematical sense
=⇒ for identical paramters, identical results are calculated.

(“Referential transparency”).

. . . but we can still do useful things!

Example: Factorial numbers

A Haskell Roadshow Joachim Breitner



����⊗����
Features

�
Demonstration

���
Conclusion

Haskell, a pure language

Example: Factorial numbers

Dysfunctional code

int fac(int n) {
int f = 1;
while (n>0) {

f = f ∗ n;
n = n − 1;
}
return f;
}

A Haskell Roadshow Joachim Breitner



����⊗����
Features

�
Demonstration

���
Conclusion

Haskell, a pure language

Example: Factorial numbers

Functional code

fac n = if n > 0
then n ∗ fac (n−1)
else 1

Recursion is your staff of life with functional languages!

A Haskell Roadshow Joachim Breitner



����⊗����
Features

�
Demonstration

���
Conclusion

Haskell, a pure language

Example: Factorial numbers

Functional code

fac n = if n > 0
then n ∗ fac (n−1)
else 1

Recursion is your staff of life with functional languages!

A Haskell Roadshow Joachim Breitner



�����⊗���
Features

�
Demonstration

���
Conclusion

Haskell, a lazy language

Arguments are not evaluated before a function call, but when
they are needed.

Allows for infinite data structures and other treats!

Functional code

const x y = x
... if const (a/42) (42/a) > 0 then ...

This code does not divide by zero, even if a = 0.

A Haskell Roadshow Joachim Breitner



�����⊗���
Features

�
Demonstration

���
Conclusion

Haskell, a lazy language

Arguments are not evaluated before a function call, but when
they are needed.

Allows for infinite data structures and other treats!

Functional code

const x y = x
... if const (a/42) (42/a) > 0 then ...

This code does not divide by zero, even if a = 0.

A Haskell Roadshow Joachim Breitner



������⊗��
Features

�
Demonstration

���
Conclusion

Haskell, a strongly typed language

Type system is very expressive (Basic types, function types,
container types, newtypes, phantom types, type classes. . . )

Can be used to statically guarantee some properties.

Types need not to be given explicitly.

“If it compiles, it works.”

Dysfunctional code

int natSquareRoot(int n) {
...
return s; // found a square root

...
return −1; // no square root found, indicate error
}

A Haskell Roadshow Joachim Breitner



������⊗��
Features

�
Demonstration

���
Conclusion

Haskell, a strongly typed language

Type system is very expressive (Basic types, function types,
container types, newtypes, phantom types, type classes. . . )

Can be used to statically guarantee some properties.

Types need not to be given explicitly.

“If it compiles, it works.”

Functional code

natSquareRoot :: Integer −> Maybe Integer

natSquareRoot n = if {− found a square root s −}
then (Just s)
else Nothing

A Haskell Roadshow Joachim Breitner



������⊗��
Features

�
Demonstration

���
Conclusion

Haskell, a strongly typed language

Type system is very expressive (Basic types, function types,
container types, newtypes, phantom types, type classes. . . )

Can be used to statically guarantee some properties.

Types need not to be given explicitly.

“If it compiles, it works.”

Functional code

natSquareRoot :: Integer −> Maybe Integer

natSquareRoot n = if {− found a square root s −}
then (Just s)
else Nothing

A Haskell Roadshow Joachim Breitner



������⊗��
Features

�
Demonstration

���
Conclusion

Haskell, a strongly typed language

Type system is very expressive (Basic types, function types,
container types, newtypes, phantom types, type classes. . . )

Can be used to statically guarantee some properties.

Types need not to be given explicitly.

“If it compiles, it works.”

Type inference

f a b c d = if d then c (a, b ++ ”a string”) else not (a b d)

has inferred type

f :: ([Char] −> Bool −> Bool) −> [Char]
−> (([Char] −> Bool −> Bool, [Char]) −> Bool)
−> Bool −> Bool

A Haskell Roadshow Joachim Breitner



�������⊗�
Features

�
Demonstration

���
Conclusion

Haskell, an interpreted and compiled language

ghci: Interpreter allows for quick experiments

ghc: Industry-strength compiler, suports several operating
systems and architectures

Free software and comes with your favourite Linux distribution

Other compilers around as well (mostly research)

A Haskell Roadshow Joachim Breitner



��������⊗
Features

�
Demonstration

���
Conclusion

Haskell’s rich ecosystem

Haskell Platform: Carefully chosen selection of most common
libraries.

Hackage: Repository with more than 2 700 libraries and
programs.

cabal-install: Downloads libraries form hackage, resolves their
dependencies, builds and installs them

You can contribute!

A Haskell Roadshow Joachim Breitner



���������
Features

⊗
Demonstration

���
Conclusion

A life demonstration

The task

Write a program that

parses a
comma-separated value
file “pen.csv”, describing
the motion of a pen and

renders the resulting
image.

GO,80
LEFT
GO,150
RIGHT
GO,20
SAY,”Hello, World!”
RIGHT
RIGHT
GO,160
RIGHT
RIGHT
SAY,”Hello, Haskell!”

A Haskell Roadshow Joachim Breitner



���������
Features

�
Demonstration

⊗��
Conclusion

What we skipped today

All the small things. . .

More about data types

Polymorphism

Type classes

Monads

Foreign Function Interface

. . . you will find here

Tutorial “Learn you a Haskell”

O’Reilly book “Real World Haskell”

Tutorial “Write Yourself a Scheme in 48 Hours”

A Haskell Roadshow Joachim Breitner



���������
Features

�
Demonstration

⊗��
Conclusion

What we skipped today

All the small things. . .

More about data types

Polymorphism

Type classes

Monads

Foreign Function Interface

. . . you will find here

Tutorial “Learn you a Haskell”

O’Reilly book “Real World Haskell”

Tutorial “Write Yourself a Scheme in 48 Hours”

A Haskell Roadshow Joachim Breitner



���������
Features

�
Demonstration

�⊗�
Conclusion

Conclusion

Writing Haskell code

takes less time

produces less bugs

is more fun

A Haskell Roadshow Joachim Breitner




	Features
	Demonstration
	Conclusion
	

