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What are Haskell’s features

It is a functional language

It is pure, i.e. side effect free

It employs lazy evaluation

It is strongly typed with type inference

It can be interpreted or compiled

Large number of libraries available centrally
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Haskell, a Functional language

Functions are first-class citizens, e.g. can be passed to other
functions (“higher order functions”).

Re-use of programing structure, separation of program flow
and program logic.

Example: Modifying each value in a linked list.
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Haskell, a Functional language

Example: Modifying each value in a linked list.

Dysfunctional code

for (list i = a; i.next != NULL; i = i.next) {
i.value = i.value + 1;

}
...
for (list i = b; i.next != NULL; i = i.next) {

i.value = i.value ∗ 2;
}
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Haskell, a Functional language

Example: Modifying each value in a linked list.

Functional code

modifyEach f [] = []
modifyEach f (x:xs) = f x : modifyEach f xs
...
modifyEach (\v −> v + 1) a
...
modifyEach (\v −> v ∗ 2) b
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Haskell, a pure language

Variables do not represent memory locations, but values.
=⇒ not assigned, but bound; no modifications.

Functions are functions in the mathematical sense
=⇒ for identical paramters, identical results are calculated.

(“Referential transparency”).

. . . but we can still do useful things!

Example: Factorial numbers
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Haskell, a pure language

Example: Factorial numbers

Dysfunctional code

int fac(int n) {
int f = 1;
while (n>0) {

f = f ∗ n;
n = n − 1;
}
return f;
}
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Haskell, a pure language

Example: Factorial numbers

Functional code

fac n = if n > 0
then n ∗ fac (n−1)
else 1

Recursion is your staff of life with functional languages!
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Haskell, a lazy language

Arguments are not evaluated before a function call, but when
they are needed.

Allows for infinite data structures and other treats!

Functional code

const x y = x
... if const (a/42) (42/a) > 0 then ...

This code does not divide by zero, even if a = 0.
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Haskell, a strongly typed language

Type system is very expressive (Basic types, function types,
container types, newtypes, phantom types, type classes. . . )

Can be used to statically guarantee some properties.

Types need not to be given explicitly.

“If it compiles, it works.”

Dysfunctional code

int natSquareRoot(int n) {
...
return s; // found a square root

...
return −1; // no square root found, indicate error
}
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Haskell, a strongly typed language

Type system is very expressive (Basic types, function types,
container types, newtypes, phantom types, type classes. . . )

Can be used to statically guarantee some properties.

Types need not to be given explicitly.

“If it compiles, it works.”

Functional code

natSquareRoot :: Integer −> Maybe Integer

natSquareRoot n = if {− found a square root s −}
then (Just s)
else Nothing
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Haskell, a strongly typed language

Type system is very expressive (Basic types, function types,
container types, newtypes, phantom types, type classes. . . )

Can be used to statically guarantee some properties.

Types need not to be given explicitly.

“If it compiles, it works.”

Type inference

f a b c d = if d then c (a, b ++ ”a string”) else not (a b d)

has inferred type

f :: ([Char] −> Bool −> Bool) −> [Char]
−> (([Char] −> Bool −> Bool, [Char]) −> Bool)
−> Bool −> Bool
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Haskell, an interpreted and compiled language

ghci: Interpreter allows for quick experiments

ghc: Industry-strength compiler, suports several operating
systems and architectures

Free software and comes with your favourite Linux distribution

Other compilers around as well (mostly research)
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Haskell’s rich ecosystem

Haskell Platform: Carefully chosen selection of most common
libraries.

Hackage: Repository with more than 2 700 libraries and
programs.

cabal-install: Downloads libraries form hackage, resolves their
dependencies, builds and installs them

You can contribute!
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A life demonstration

The task

Write a program that

parses a
comma-separated value
file “pen.csv”, describing
the motion of a pen and

renders the resulting
image.

GO,80
LEFT
GO,150
RIGHT
GO,20
SAY,”Hello, World!”
RIGHT
RIGHT
GO,160
RIGHT
RIGHT
SAY,”Hello, Haskell!”
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What we skipped today

All the small things. . .

More about data types

Polymorphism

Type classes

Monads

Foreign Function Interface

. . . you will find here

Tutorial “Learn you a Haskell”

O’Reilly book “Real World Haskell”

Tutorial “Write Yourself a Scheme in 48 Hours”
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Conclusion

Writing Haskell code

takes less time

produces less bugs

is more fun

A Haskell Roadshow Joachim Breitner




	Features
	Demonstration
	Conclusion
	

