
KARLSRUHER INSTITUT FÜR TECHNOLOGIE

FAKULTÄT FÜR MATHEMATIK

Joachim Breitner

Diploma Thesis

Loop subgroups of Fr and the images of
their stabilizer subgroups in GLr(Z)

U

y1U

y2U

y

y

y

z, x

z, x

x1U

x2U

x

x

x

z, y

z, y

z

Supervisors:
Prof. Dr. Frank Herrlich

Dr. Gabriela Schmithüsen

February 11, 2010

Preface

THE abelianization of the free group over r generators is a group homomorphism
Fr → Zr. Its kernel is a characteristic subgroup of Fr and thus, this map gives

rise to a map between the respective automorphism groups

B : Aut(Fr)→ GLr(Z).

This homomorphism can also be given explicitly. It maps each automorphism
γ ∈ Aut(Fr) to an integral matrix by counting the number of occurrences of each
generator in the image of each generator: If g1, . . . , gr are the generators of the free
group, this means

γ 7→
(
#gi γ(gj)

)
i,j=1...r .

In the study of imprimitive translation surfaces, especially origamis [Sch05], this
map is used to obtain Veech groups. Each origami can be associated with a subgroup
U ≤ F2 of finite index. The image of the stabilizer group of U in Aut(F2) under
B, intersected with SL2(Z), gives the Veech group of the origami. In the case of
origamis, an interesting question is which subgroups of SL2(Z) occur as Veech
groups. There is a positive answer for many congruence subgroups (see [Sch05]),
and for all subgroups of the principal congruence group of level 2 (see [EM09,
Theorem 1.2]).

The construction of a Veech group can be generalized to subgroups of Fr for a
general r ∈ N instead of origamis. For rank of 3 or higher, there is a reason to hope
that these groups will be easier to understand, as every normal subgroup of SLr(Z)

besides {I} and {I,−I} is a congruence group and thus can be thought of as a
subgroup of SLr(Z/lZ), where l is the congruence level of the subgroup [Sur03,
Theorem 4-4.2].

To investigate this situation, we implemented an algorithm called CosetProject that
projects a subgroup of Aut(Fr) to GLr(Z) and detects its congruence level. Together

3

with the algorithm implemented in [Fre08], which calculates the stabilizer group of
a subgroup of Fr in Aut(Fr), it can be used to detect the congruence level of a Veech
group. The algorithm is described in detail in Chapter 2.

Following these investigations, a certain class of subgroups of Fr arose my interest.
I dubbed them loop subgroups, due to the appearance of their coset graphs. These
are generalizations of the L-origamis, but their analogs to the Veech groups show
very different behavior. They are studied in Chapter 3, where the image of their
stabilizer group under the map B is calculated. Because of the similar results, the
index two subgroups are treated in the same manner in Section 3.10.

I owe sincere thanks to Dr. Gabriela Schmithüsen, under whose guidance this
thesis was created. She was always generous with time, advice, regular proof-

reading, ideas and inspiration.

Moreover, I wish to thank Mareike Schmidtobreick and Pascal Maillard for proof-
reading the final work.

4

Contents

1 Fundamentals 7

1.1 The automorphism group . 7
1.2 The free group . 8
1.3 The coset graph . 10
1.4 Pseudocode notation . 13

2 The CosetProject algorithm 15

2.1 First approach: Todd-Coxeter . 16
2.1.1 Description of the algorithm 16
2.1.2 An example application of the Todd-Coxeter algorithm . . . 19
2.1.3 Analysis of the algorithm . 22

2.2 Second approach: CosetProject . 22
2.2.1 Proof of termination . 24
2.2.2 Proof of correctness . 24

2.3 Run time analysis . 26
2.3.1 Improved data structures . 27

2.4 Preimage calculation . 29
2.5 Application to the automorphism group 31

2.5.1 Index two subgroup intersection 32
2.5.2 The map B in terms of generators 34
2.5.3 Subgroup intersection and coset graphs 34
2.5.4 Generator rewriting . 35

2.6 Congruence level . 36
2.7 Results . 37

3 The loop subgroups 39

3.1 Definition of loop subgroups . 39
3.2 Preparations . 41

3.2.1 Permutations of cosets . 41
3.2.2 The linear group and the principal congruence subgroup . . 44

5

LIST OF ALGORITHMS

3.3 The odd case . 46
3.4 The level . 48
3.5 Stabilizer subgroups in GLr(Z/2Z) 49

3.5.1 Generators . 49
3.5.2 Maximality . 51

3.6 The even case . 52
3.7 The mixed case . 53
3.8 Sharper bounds . 54
3.9 The excluded case . 55
3.10 Index two subgroups of Fr . 56
3.11 Discussion and further directions . 57

List of Algorithms

1 Todd-Coxeter algorithm . 17
2 CosetProject algorithm . 23
3 CosetProject algorithm (variant 1) . 28
4 CosetProject algorithm (variant 2, preimage calculation) 30
5 Subgroup intersection algorithm . 35
6 Congruence level detection . 37

6

CHAPTER 1

Fundamentals

THE document at hand does not require very deep mathematical knowledge.
Readers familiar with concepts taught in foundations courses – groups, homo-

morphisms, matrices – should be able to read this thesis with little effort. Some
definitions that slightly extend beyond this basic knowledge, such as the group
of automorphisms, finitely presented groups and the coset graph, are explained
briefly in this chapter. Also, the pseudocode notation used for the algorithms is
explained.

1.1 The automorphism group

One of the main objects of interest is Aut(Fr), the automorphism group of the free
group of rank r.

Definition 1 (Automorphism group) Let G be a group. Denote with Aut(G) the
set of automorphisms of G, i.e. the bijective homomorphisms from G to G. This
set becomes a group, called the automorphism group of G, when equipped with the
function concatenation ◦ as the group operator.

Remark 1 Because abelian groups are Z-modules, one can identify the automor-
phisms of the group Zr with the group of integral, invertible matrices of rank r:

Aut(Zr) = GL(Zr) = GLr(Z)

Definition 2 (Stabilizer group) For a subgroup U ≤ G, the stabilizer subgroup is
defined as the set of automorphisms that map U to U:

StabAut(G)(U) := {γ ∈ Aut(G) : γ(U) = U}.

7

1 Fundamentals

Definition 3 A subgroup U ≤ G is called characteristic if it is left invariant under
all automorphisms of U, i.e. ∀γ ∈ Aut(G) : γ(U) = U. In other words, U ≤ G is
called characteristic if StabAut(G)(U) = Aut(G).

Remark 2 Let ϕ : G → G′ be a surjective group homomorphism such that Kern ϕ

is a characteristic subgroup of G. This homomorphism naturally gives rise to a
homomorphism ϕ̂ : Aut(G)→ Aut(G′), defined by

ϕ̂(γ)(g′) = ϕ(γ(g)) with g ∈ ϕ−1(g′)

for γ ∈ Aut(G), g′ ∈ G′.

This definition is sound: If g1, g2 ∈ ϕ−1(g′), then g1g−1
2 ∈ Kern ϕ. Therefore,

ϕ(γ(g1)) · ϕ(γ(g−1
2)) = ϕ(γ(g1g−1

2)) ∈ ϕ(γ(Kern ϕ)) = ϕ(Kern ϕ) = {Id}

and hence ϕ(γ(g1)) = ϕ(γ(g2)).

The kernel of the map Fr → Zr mentioned in the preface is, by definition of
abelianization, the commutator subgroup [Fr, Fr] of the free group. Every com-
mutator subgroup is characteristic. This justifies the introduction of the map
B : Aut(Fr)→ GLr(Z).

1.2 The free group

Definition 4 (Free group) The free group Fr of rank r with generators g1, . . . , gr is
the set of words over the alphabet {g1, . . . , gr, g−1

1 , . . . , g−1
r }, considering two words

equal if they can be reduced to the same word by means of canceling gig−1
i and

g−1
i gi. The group operation is the concatenation of words.

The empty word is the identity of the group Fr, and in the following denoted by
Id.

Example 1 In F3 with generators g1, g2, g3, the following identities hold:

(g1g−1
2 g−1

3)−1 = g3g2g−1
1

g1 = g1g−1
2 g2 = (g−1

2 g1)
−1g2

(g1g2g−1
3) · (g3g−1

2 g−1
1) = Id.

8

1.2 The free group

An equivalent definition of the free group Fr with generators g1, . . . , gr is the uni-
versal property of the free group:

Remark 3 (Universal property of the free group)
For any group G and map f : {g1, . . . , gr} → G, there is exactly one group homo-
morphism ϕ : Fr → G such that ϕ(gi) = f (gi) for i = 1, . . . , r.

A useful consequence of this property is that group homomorphisms Fr → G can
be sufficiently specified by stating the images of the generators of Fr. Naturally, this
includes automorphisms of the free group.

Example 2 For i ∈ {1, . . . , r}, the map

#gi : Fr → Z

is defined by its images of the generators of Fr:

#gi(gk) :=

{
1, k = i

0, k 6= i.

It is the generator-counting map which calculates the number of occurrences of the
generator gi in a word w ∈ Fr, counting negative powers of gi negatively.

Remark 4 Every finitely generated group G = 〈h1, . . . , hr〉 is isomorphic to a quo-
tient group of the free group of rank r.

PROOF By the universal property of the free group, the mapping gi 7→ hi defines
a group homomorphism ϕ : Fr → G. This homomorphism is surjective, so by the
fundamental homomorphism theorem, we have

Fr�ker ϕ
∼= G.

�

Definition 5 (Finitely presented group) Let Fr be the free group of rank r and
generators g1, . . . , gr, and R = {r1, . . . , rs} ⊂ Fr be a finite subset of Fr, called the
relations. Then 〈g1, . . . , gr | r1, . . . , rs〉 is called a finite presentation of the group

Fr�〈〈R〉〉,

where
〈〈R〉〉 :=

⋂
NCFr
R⊂N

N

is the normal closure of the set R.

Any group that has a finite presentation is called a finitely presented group.

9

1 Fundamentals

Usually, the symbols used as generators in the presentation are interchangeably
used for the group element they represent.

The free groups of finite rank are trivially finitely presented. Many other important
groups – Aut(Fr), the matrix groups GLr(Z) and SLr(Z) – are also finitely presented.
This is fortunate, as these groups can then be investigated computationally.

Example 3 The modular group is a finitely presented group:

PSL2(Z) =
SL2(Z)�{I,−I} = 〈S, T | S2, (ST)3〉.

The symbols S and T represent the matrices
(0 1
−1 0

)
respectively

(
1 1
0 1

)
.

Example 4 [Sur03, Theorem 4-3.2] The integral special linear group SLr(Z), r ≥ 3,
is generated by the r · (r− 1) symbols Xij, i, j ∈ {1, . . . , r}, i 6= j, subject to the
relations

[Xij, Xjk] = Xik for i 6= k

[Xij, Xkl] = Id for j 6= k, i 6= l

(X12X−1
21 X12)

4 = Id,

where [α, β] := αβα−1β−1 denotes the commutator bracket. The symbol Xij repre-
sents the elementary matrix Xij, i.e. the r× r-matrix with ones on the diagonal, one
additional one in the i-th row and j-th column and zeroes everywhere else.

Any element of a finitely generated group G with r generators can be represented by
a word in the generators and their inverses, which the computer can treat as a list of
numbers from the set {−r, . . . ,−1, 1, . . . , r}, where the positive numbers correspond
to the generators of the group and the negative numbers to their inverses. In the
following, I will at times use a word in the generators of G as an element of G, an
element of Fr and as a list of generators.

1.3 The coset graph

The most natural way to specify a subgroup U of a group G, i.e. a subset that is itself
again a group, is by a defining property. For example, a point-stabilizer subgroup
of the symmetric group can be written as

StabSn(1) = {π ∈ Sn | π(1) = 1}.

10

1.3 The coset graph

U0

U1

U2

U3

(1 2 3 4)

(1 2 3 4)(1 2 3 4)

(1 2 3 4)
(1 2)

(1 2)

(1 2)

(1 2)

Figure 1: The coset graph of S3 ≤ S4

Another way of specifying subgroups is by a set of subgroup generators: If H ⊂ G
is a subset of the group, then

〈H〉 :=
⋂

U≤G
H⊂U

U

is the smallest subgroup containing H and is called the subgroup generated by
H.

While these methods are often convenient to define subgroups, they are not neces-
sarily useful when working with subgroups, especially when applying computa-
tional methods to them. Therefore, where possible, it can be useful to describe a
subgroup by its coset graph. In this document, we will work with left cosets and
will not always mention this fact. Of course, it is possible to work with right cosets
in an analogous manner.

Definition 6 (Coset graph) The coset graph of a subgroup U of a finitely generated
group G with generators g1, . . . , gr is the directed multigraph with the left cosets
{wU | w ∈ G} of U as nodes and, for each coset wU and generator gi, one edge
from wU to giwU, labeled gi.

When convenient, one can also add edges labeled by the inverses of the genera-
tors.

11

1 Fundamentals

Example 5 The coset graph of S3 as a subgroup of S4 with respect to the generators
(1 2) and (1 2 3 4) is depicted in Figure 1 on the preceding page. The nodes are
numbered for readability. The corresponding cosets are:

U0 := S3

U1 := (1 2 3 4) · S3

U2 := (1 3)(2 4) · S3

U3 := (1 4 3 2) · S3

Remark 5 Let U ≤ G.

1. The coset graph of U is a connected, regular graph of degree 2 · r, as every
node has r outgoing and r ingoing edges.

2. The number of nodes in the coset graph of U is [G : U]. Therefore, the graph
is finite if and only if U has finite index.

We can see in Figure 1 on the previous page that [S4 : S3] = 4

3. The node labels are not essential and can be omitted as long as one remembers
which node, called the origin, represents the subgroup itself. Using another
node to represent the subgroup gives the coset graph of a conjugate of the
subgroup. The coset graph of every subgroup conjugate can be obtained this
way.

We can see in Figure 1 on the preceding page that S3 is not normal in S4:
The coset graph of S3 looks different when using U1 as the origin, therefore
S3 6= (1 2 3 4)S3(1 2 3 4)−1.

4. The Cayley graph of G is the coset graph of the trivial subgroup {Id} ≤ G.

In the computational part of this thesis, we will often trace elements of the group, i.e.
a word in the generators, in the graph. This is best explained by example. Tracing
the permutation (1 2)−1(1 2 3 4)(1 2) in Figure 1 on the previous page, starting at
the node U0, ends up at the node U2: Looking at the generators in the word from
the right, we first have (1 2). The edge with that label from U0 is reflexive, so we
stay in node U0. The next generator is (1 2 3 4), so we follow the edge to U1. The
final generator is an inverse, so we have to traverse the edge from U2 to U1 labeled
(1 2) in the opposite direction.

This way, once we have a coset graph for a subgroup U ≤ G, we can for a word
w ∈ G and a coset vU determine the coset wvU. This gives us a procedure to

12

1.4 Pseudocode notation

determine the subgroup membership problem w ∈ U for a word w ∈ G: We have
w ∈ G if and only if tracing that word from the coset U ends up in the coset U.

In the following chapter, the coset graph is represented by a coset table, which
has the adjacency lists of the nodes as rows. It has one row for each coset vU, one
column for each generator gi and entries referring to the number of the row of
givU. As an optimization measure, columns for the inverses of generators are also
added.

1.4 Pseudocode notation

The next chapter contains a series of algorithms, written in pseudocode. The syntax
is mostly self-explanatory.

The main body of each algorithm extends from the declaration of input and output
to the return statement, possible functions are declared afterward. The statement
forall x ∈ S executes the body of the statement once for each element of S, with the
variable x bound to that value.

Variables are assigned using the← operator, which corresponds to := in Pascal-like
programming languages. The statement a← b← c is short for b← c; a← b. The
equals-to symbol = is exclusively used for comparisons.

Array access is zero-based, i.e. A[0] is the first entry of the array and A[len(A)− 1]
is the last entry. Tables are written as arrays of arrays, so C[0][0] is the entry
in the first row and first column, while C[3][2] is the entry in the forth row and
third column. Therefore, len(C) denotes the number of rows in the table. For
convenience, at times we say that a table has columns “labeled by the elements
of the set X”. In that case, X is finite and there is an implicit numbering of these
elements. The expression C[0][x] stands for C[0][i] where i is the implicit number
of x.

13

CHAPTER 2

The CosetProject algorithm

AS outlined in the preface, we are interested in applying the map B, as defined
in the preface, to the stabilizer subgroup of a finite index subgroup U ≤ Fr.

For the first step, we can use Algorithm 6 in [Fre08]. Its input is a finite index
subgroup U ≤ Fr, given by a list of Nielsen-reduced generators. The algorithm
calculates the stabilizer group StabAut(Fr)(U) of the subgroup and returns

• a list of generators of the stabilizer group,

• a list of representatives of the cosets of the stabilizer group or

• the coset graph of the automorphism group.

[Fre08] also contains variants of this algorithm optimized for efficiency.

This algorithm needs a set of generators of Aut(Fr). Freidinger suggests that the
generating set τ1, σ1 2, σ2 3, . . . , σr−1 r, η (cf. [AFV08]) is beneficial for the run time
efficiency of her algorithms. See Table 1 on the following page for the definitions
of these generators. Note that each of these are self-inverse. An automorphism as
returned by her algorithm is represented by their image of the generators of Fr as
well as a decomposition in these generators of Aut(Fr).

15

2 The CosetProject algorithm

τi(gk) =

{
g−1

i , k = i

gk, k 6= i
σi j(gk) =


gj, k = i

gi, k = j

gk, k 6= i, j

η(gk) =


g−1

2 g1, k = 1

g−1
2 , k = 2

gk, k > 2

Table 1: A system of generators of Aut(Fr)

2.1 First approach: Todd-Coxeter

Given StabAut(Fr)(U), the task is to calculate Γ := B(StabAut(Fr)(U)) ≤ GLr(Z) and
Γ′ := Γ ∩ SLr(Z) ≤ SLr(Z). For the latter group, generators and relations are given
in [Sur03, Theorem 4-3.2] (see Example 4 on page 10). This allows the use of the
very general Todd-Coxeter algorithm, which calculates a coset graph of a subgroup
of finite index in any finitely generated group. [TC36].

The variant of the algorithms described here is very close to the original algorithm
from 1936, which was obviously designed to be carried out by hand. A serious
implementation as a computer program would involve a number of optimizations,
such as constructing the relation tables on demand or special-casing involutory
constructors. [Lee63]

2.1.1 Description of the algorithm

The pseudocode listing Algorithm 1 outlines the Todd-Coxeter algorithm. The
input to the algorithm is provided as a list of relations R of the group G, written as
words in the generators of the group, and a list of generators H of the subgroup U,
also written as words in the generators of the whole group.

It works with three types of tables:

1. A left coset table C, with the columns labeled by the generators and their
inverses and the rows labeled by the coset numbers.

2. For each relation w in the presentation of the group G, a relation table Rw

with columns labeled by the letters of the word w and rows labeled by the
coset numbers.

16

2.1 First approach: Todd-Coxeter

Algorithm 1: Todd-Coxeter algorithm
Input: Group G given by generators (gi)i=1,...,r and relations R
Input: Subgroup U ≤ G given by the set of generators H
Output: A coset table of U ≤ G

Let X be the set of generators and their inverses.
C ← empty table with 2r columns labeled by the elements of X and one row
forall w ∈ R do

Rw ← empty table with len(w)+1 columns and one row
Rw[0][0]← Rw[0][len(w)]← 0

forall h ∈ H do
Uh ← empty table with len(h)+1 columns and one row
Uh[0][0]← Uh[0][len(h)]← 0

while there is a table Tw ∈ {Uh, h ∈ H} ∪ {Rw, w ∈ R} with an empty spot do
Let i be a row that is not complete and j the column of the first empty
spot.
k← Tw[i][j− 1]
g← w[len(w)− (j + 1)]
if C[k][g] is not set then

l ←len(C)
Extend each of the tables C and Rw, w ∈ R by one row, the l-th.
C[k][g]← l
C[l][g−1]← k
forall w ∈ R do Rw[l][0]← Rw[l][len(w)]← l

T[i][j]← l ← C[k][g]
if T[i][j + 1] is set then

m← T[i][j + 1]
ḡ← w[len(w)− j]
if C[l][ḡ] is not set then C[l][ḡ]← m
if C[m][ḡ−1] is not set then C[m][ḡ−1]← l
if C[l][ḡ] 6= m then Coincidence(C[l][ḡ], m)

if C[m][ḡ−1] 6= l then Coincidence(C[m][ḡ−1], l)

return C

function Coincidence(i, j) begin
if j < i then Coincidence(j, i)
else

forall table entries T[k][l] do
if T[k][l] = j then T[k][l]← i

forall g ∈ X do
if C[j][g] is set then

if C[i][g] is not set then C[i][g]← C[j][g]
if C[i][g] 6= C[j][g] then Coincidence(C[i][g], C[j][g])

end
17

2 The CosetProject algorithm

3. For each generator h of the subgroup, a generator table Uh with columns
labeled by letters of the word h and exactly one row, labeled by 0.

The entries of these tables are cosets of the subgroup U, represented by natural
numbers. The coset Id ·U has the number 0, other numbers are added as required.
Let Ui denote the coset represented by i. For convenience, an unlabeled zeroth
column is added to the latter two tables, whose entries contain the coset number of
the respective row.

The semantics of the coset table is as follows: If the entry C[i][g] in the i-th row
and the column labeled by the generator or inverse of a generator g is set, then
multiplying the generator g with the coset represented by i gives the coset with
number C[i][g]:

UC[i][g] = g ·Ui.

Storing this information about both generators and inverses of generators is redun-
dant, but convenient.

For the other tables the semantics is as follows: Let Tw be the table corresponding
to the relation or generator w. If both T[i][j] and T[i][j + 1] are set, then multiplying
the generator w[len(w)− (j + 1)], which is the j-th last letter in the word w, with
the coset represented by T[i][j] gives the coset with number T[i][j + 1]:

UT[i][j+1] = w[len(w)− (j + 1)] ·UT[i][j]

We have to reverse the words because we are working with left cosets. When
working with right cosets, this is not necessary.

Missing entries in these tables will now be filled sequentially, adding new coset
numbers as required and merging coset numbers when known to represent the
same coset, until the table C is filled completely and fully determines the subgroup
U. The other tables can then be discarded and C is returned.

Upon initialization, the tables are generated and an initial row 0, representing the
coset Id ·U, is added. For the relation and generator tables, the zeroth column of
the row is set to 0. Also, the last column is set to zero, as w ·U = U for w ∈ R and
h ·U = U for h ∈ H.

As long as there is an empty entry in the relation or generator tables, it is filled. If the
necessary information is already contained in the coset table, it is used. Otherwise,
a new coset number is created. For this, the coset table and the relation tables are
extended by an additional row. Both the first and last entry in the new row in the
relation tables is set to the number of the new coset, as w ·Ui = Ui for a relation

18

2.1 First approach: Todd-Coxeter

w ∈ R and a coset Ui. The coset table is amended with this information. Note that
we do not extend the generator tables, as in general h ·Ui 6= Ui for a generator
h ∈ H of the subgroup. If we did this, we would treat them just like group relations
and effectively calculating the coset graph of 〈〈H〉〉, the normal closure of U, instead
of 〈H〉.

If we complete a row of a relation or generator table this way, since the last column
of the row is already known, we find a new bit of information: Let w be the relation
or generator of the table, ḡ the first letter of the word w and i the number of the
row. If we have just put k in the penultimate entry in the row, then we know that ḡ
multiplied with the coset represented by k gives the coset represented by i:

Ui = ḡ ·Uk

This is called a deduction. If the corresponding entry C[k][ḡ] (resp. the entry for
the inverse edge in the graph) in the coset table is still empty, we set it to i. If
the entry is already set to l and differs from i, we know that the numbers i and l
represent the same coset. This is called a coincidence and is handled by the function
Coincidence.

This function replaces every occurrence of the larger coset number in the tables
with the lower coset numbers. The information in the respective rows in the coset
table is compared. If it disagrees, a new coincidence was found, and the function is
called recursively. The row of the larger coset number is deleted from the tables
(without changing the indexes of the following rows).

Eventually, all entries in the tables (ignoring deleted rows) have been filled. There-
fore, C contains the full coset table of U and is returned. In practice, one might
want to compress the table by moving the rows “up” to fill the empty spots left
over by deleted lines before returning it.

2.1.2 An example application of the Todd-Coxeter algorithm

We want to derive the coset graph of S3 ≤ S4, as seen in Figure 1 on page 11. The
representation

〈B, C | B2, C4, (BC)3, (BC−1BC)3〉

is given in [Cox36], along with presentations for other symmetric groups and
alternating groups. The symbols B and C represent the permutations (1 2) and
(1 2 3 4) respectively. In our case of S4, this can be reduced further to

〈B, C | B2, C4, (BC)3〉

19

2 The CosetProject algorithm

C B B−1 C C−1

0
RB2 B B
0 0

RC4 C C C C
0 0

R(BC)3 C B C B C B
0 0

UB B
0 0

UC−1BC2 C C B C−1

0 0

Table 2: Todd-Coxeter tables for S3 ≤ S4 after initialization

as (BC−1BC)3 ∈ 〈〈B2, C4, (BC)3〉〉 (this can be verified by some lengthy manual
calculations1 or by using a computer algebra system like [GAP08]). The subgroup
generators (1 2) and (1 2 3) of S3 are represented by the words B and C−1BC2.

For the Todd-Coxeter algorithm, we create six tables: The coset table C, the three
relations tables RB2 , RC4 and R(BC)3 and the subgroup generator tables UB and
UC−1BC2 , initialized as shown in Table 2.

We have a subgroup generator of length one, so the deduction B · S3 = S3 follows
immediately. This special-casing of length-one relations and subgroup generators
was omitted in the pseudocode listing in Algorithm 1. This deduction fills the entry
C[0][B] = 0 and its inverse direction, C[0][B−1] = 0. We then proceed by filling
the table UC−1BC2 . Because we have no information about C[0][C], we introduce a
new coset number 1, and likewise coset 2 and 3. We now are in the situation of
Table 3.

The deduction from table UC−1BC2 tells us that we have to set C[3][C−1] = 0, which
is no problem, and C[0][C] = 3. But this table entry is already set to 1, so these coset
numbers actually represent the same coset. A call to Coincidence(1, 3) copies the
value of C[3][B−1], which is 2, to C[1][B−1], replaces 3 by 1 everywhere and marks
coset 3 as deleted. We are now in the situation of Table 4.

We now continue to fill the relation tables. The value RB2 [0][0] is already known
from C[0][B] = 0. For RB2 [1][0] we introduce a new coset number 4, which is
already merged with coset number 2 when we fill the next row in the table RB2 .
We continue filling RC4 , which leads to the introduction of coset number 5. To fill
RB2 [5][0], we introduce coset number 6, which allows us to fill RC4 completely with
known information. Turning to the remaining table, T(CB)3 , we fill the first row. For
the last entry, we require a new coset 7. Now, the coset tables look as in Table 5.

The deduction would yield C[7][B] = 0 and thus C[0][B−1] = 7, which is in conflict
with the existing data. Therefore, Coincidence(0, 7) is called and rows 0 and 7 are
merged. As they disagree in the last column, Coincidence(5, 6) is called, leaving

1 (BC−1BC)3 = B2(B2(((B2((B2(C4)B(((BC)3)−1)B)CB−1
B2C4)C−1B(((BC)3)−1)B)CB−1

B2C4)C−1
)B

(((BC)3)−1)B)CB(B2(B2(B2(((BC)3)−1)B)CB)CB)C−1
where βα := α−1βα.

20

2.1 First approach: Todd-Coxeter

C B B−1 C C−1

0 0 0 1
1 2 0
2 3 1
3 2

RB2 B B
0 0
1 1
2 2
3 3

RC4 C C C C
0 0
1 1
2 2
3 3

R(BC)3 C B C B C B
0 0
1 1
2 2
3 3

UB B
0 0

UC−1BC2 C C B C−1

0 1 2 3 0

Table 3: Todd-Coxeter tables for S3 ≤ S4 before the first coincidence

C B B−1 C C−1

0 0 0 1
1 2 2 0
2 1 1
3 2 0

RB2 B B
0 0
1 1
2 2
3 3

RC4 C C C C
0 0
1 1
2 2
3 3

R(BC)3 C B C B C B
0 0
1 1
2 2
3 3

UB B
0 0

UC−1BC2 C C B C−1

0 1 2 1 0

Table 4: Todd-Coxeter tables for S3 ≤ S4 after the first coincidence

C B B−1 C C−1

0 0 0 1 5
1 2 2 2 0
2 1 1 5 1
3 2 0
4 1 1
5 6 6 0 2
6 5 5 7
7 6

RB2 B B
0 0 0
1 2 1
2 1 2
3 3
4 4
5 6 5
6 5 6
7 7

RC4 C C C C
0 1 2 5 0
1 2 5 0 1
2 5 0 1 2
3 3
4 4
5 5
6 6
7 7

R(BC)3 C B C B C B
0 1 2 5 6 7 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

UB B
0 0

UC−1BC2 C C B C−1

0 1 2 1 0

Table 5: Todd-Coxeter tables for S3 ≤ S4 before the final deduction

21

2 The CosetProject algorithm

only coset numbers 0, 1, 2 and 5 in place. Now, the coset table is complete. Filling
the other tables with this information, as shown in Table 6, does not lead to any
new deductions, so the algorithm terminates. It is easily verified that the coset table
describes the coset graph as depicted in Figure 1 on page 11.

2.1.3 Analysis of the algorithm

Todd and Coxeter did not explicitly specify the order in which the tables have to
be filled. If the algorithm ensures that for any coset added, its row in the coset
table is eventually filled, and if the index of U in G is finite then the algorithm is
guaranteed to terminate [Ser97].

A formal proof can be found in [Men64]. Mendelsohn adds additional, redundant
relations to R, such that they form what Mendelsohn calls an “algorithmic set”: A
set of relations where each generator is both the first letter of a relation and the last
letter of a relation. This way, the coset table rows are guaranteed to fill eventually.

Unfortunately, a run time complexity analysis as usual of this algorithm will fail:
Assume that the run time were bounded by a computable function of the size of
the input. Note that the algorithm does not terminate when applied to a subgroup
of infinite index. Given an arbitrary subgroup, we could use the algorithm to
determine whether its index is infinite: If the algorithm runs longer than the given
bound, this is the case. But this is a problem known to be unsolvable [BBN59,
Theorem 7], therefore no such upper bound can exist [Sim94].

2.2 Second approach: CosetProject

Our implementation of the Todd-Coxeter algorithm, which was relatively naı̈ve,
turned out to be too slow for our purposes. Using it here is like using a sledge-
hammer to crack a nut: We already have the coset graph of StabAut(Fr)(U) available,
but did not use this information. This observation led to a faster algorithm for the
calculation of a coset graph of B(StabAut(Fr)(U)).

This algorithm, which is given in pseudocode in Algorithm 2, works in the general
setting of projecting a subgroup U ≤ G with a given coset table C onto a quotient
group G′ given by additional relations R such that G′ = G/〈〈R〉〉. Let π : G → G′

denote the projection map. Note that π maps cosets of U to cosets of U′ := π(U).

22

2.2 Second approach: CosetProject

C B B−1 C C−1

0 0 0 1 5
1 2 2 2 0
2 1 1 5 1
3 2 0
4 1 1
5 5 5 0 2
6 5 5 0
7 0 6

RB2 B B
0 0 0
1 2 1
2 1 2
3 3
4 4
5 5 5
6 5 6
7 7

RC4 C C C C
0 1 2 5 0
1 2 5 0 1
2 5 0 1 2
3 3
4 4
5 0 1 2 5
6 6
7 7

R(BC)3 C B C B C B
0 1 2 5 5 0 0
1 2 1 2 1 2 1
2 5 5 0 0 1 2
3 3
4 4
5 0 0 1 2 5 5
6 6
7 7

UB B
0 0

UC−1BC2 C C B C−1

0 1 2 1 0

Table 6: Todd-Coxeter tables for S3 ≤ S4 at the end of the algorithm

Algorithm 2: CosetProject algorithm
Input: Generators (gi)i=1,...,r of a group G
Input: The coset table C of a subgroup U ≤ G
Input: Relations R describing the quotient group G′ := G/〈〈R〉〉
Output: The coset table of the image U′ of U in G′

Let X be the set of generators and their inverses.
forall cosets numbers i ∈ {0, . . . , len(C)− 1} do

if row i in C is not marked as merged then
forall relations w ∈ R do

Trace w in C starting with coset i, let j be the resulting coset.
if i 6= j then Coincidence(i, j)

Return C.

function Coincidence(i, j) begin
if j < i then Coincidence(j, i)
else

forall table entries C[k][g] do
if C[k][g] = j then C[k][g]← i

forall g ∈ X do
if C[i][g] 6= C[j][g] then Coincidence(C[i][g], C[j][g])

Mark row j in C as merged.

end

23

2 The CosetProject algorithm

During the process of the algorithm, the coset table of U is modified to become the
coset table of U′. Speaking in terms of the coset graph, edges are bent to point to
another coset of of U that maps to the same coset of U′ as the previous target of the
edge.

To do so, the algorithm iterates through all cosets Ui of U ≤ G and relations w
in the presentation of G′ and traces the word w in the coset graph of U. Because
π(w) = Id in G′ we have π(w) · v̄ · π(U) = v̄ · π(U). So if we end up at a different
coset number, these numbers represent the same coset of U′. We replace the higher
number everywhere in the tables with the lower number and mark the row of the
higher number as merged, so that we can skip it in the main loop. The entries of
the two rows are compared, and if they disagree, we have found the next pair of
cosets of U that map to the same coset of U′.

2.2.1 Proof of termination

The main loop iterates through the cosets and relations, both of which are finite lists.
Also the loops in the function Coincidence loop over finite lists. For each coset
i the function Coincidence is called at most once with i as the second argument,
as after the first loop in the body of the function, the table does not contain an
i anywhere. Therefore, only finitely many calls to Coincidence occur, and the
algorithm is guaranteed to terminate.

2.2.2 Proof of correctness

Define the relation i ∼ j on the set of cosets of U to indicate that Coincidence(i, j)
has been called during the execution of the algorithm. Define the relation ≈ as the
equivalence relation generated by ∼, i.e. its transitive, reflexive, symmetrical hull.
Let cosets of U that are projected to the same coset of U′ in G′ be related by ≡, i.e.
i ≡ j ⇐⇒ π(Ui) = π(Uj).

Note that at the beginning of the algorithm, C is the coset table for U in G, so
j = C[i][g] ⇐⇒ Uj = g ·Ui. As the entries of C are changed, this property can be
violated. Instead, we will show that at any point in the algorithm, the following
invariant holds:

j = C[i][g] =⇒ π(Uj) = π(UC[i][g]) = π(g ·Ui).

The invariant obviously holds at the beginning of the algorithm.

24

2.2 Second approach: CosetProject

A change to the table C only happens after a call to Coincidence(i, j) with i < j,
which replaces the value j by i. To preserve the invariant, we want π(Ui) = π(Uj)

to hold, i.e. i ≡ j. The function is called on two occasions:

Case 1: The main loop calls Coincidence(i, j) if there is a relation w ∈ R such
that tracing the word w in the graph from node i ends up in node j. This
implies, as the invariant holds, π(Uj) = π(w ·Ui). Since π(w) = Id, we
have π(Ui) = π(Uj) and hence i ≡ j.

Case 2: i = C[i′][g], j = C[j′][g] and Coincidence(i, j) is called from the body of
a call to Coincidence(i′, j′). By induction on the nesting level of the calls
to Coincidence, with the base case being Case 1 from above, we know
i′ ≡ j′. i = C[i′][g] indicates π(g ·Ui′) = (Ui), and j = C[j′][g] indicates
π(g ·Uj′) = (Uj). Hence we have π(Ui) = π(g ·Ui′) = π(g) · π(Ui′) =

π(g) · π(Uj′) = π(g ·Uj′) = π(Uj) and therefore i ≡ j.

This proves that the invariant is never violated and also shows that the implication
“i ∼ j =⇒ i ≡ j” holds. Because ≈ is contained in every equivalence relation that
contains ∼, “i ≈ j =⇒ i ≡ j” follows.

On the other hand, “i ≡ j =⇒ i ≈ j” holds as well: We have π(Ui) = π(Uj) if and
only if there is a word w ∈ 〈〈R〉〉 with Uj = w ·Ui. This means that w is a product
of conjugates of elements of R. Because ≈ is transitive, it is sufficient to assume
that w = vrv−1 is a conjugate of r ∈ R. Let k be the coset reached by tracing v−1

from i in the coset graph, i.e. Uk = v−1 ·Ui, and likewise let l denote the coset with
Ul = r ·Uk = r · v−1 ·Ui. At some point in the main loop of the algorithm, the
relation r is traced from the coset k, Coincidence(l, k) is called and k ≈ l holds. We
prove k ≈ l by induction over the length of v. If v is actually the empty word, k = i
and l = j and we are done.

Ui

Uk̄

Uk Ul
Ul̄

Uj

g−1

v̄−1 r
v̄

g

Figure 2: Denotations of cosets in the proof for i ≡ j =⇒ i ≈ j

Otherwise, let g ∈ X be the first letter in the word v, i.e. v = g · v̄, let Uk̄ = g−1 ·Ui
and Ul̄ = v̄ · r · v−1 ·Ui. The situation is illustrated in Figure 2. By the induction
hypothesis, we have k̄ ≈ l̄. In the second loop of the function Coincidence(k̄, l̄)
the entries of the coset table for the cosets k̄ and l̄ are compared. The original

25

2 The CosetProject algorithm

entries of C[k̄][g] resp. C[l̄][g] as they were before the algorithm runs are i resp. j, as
g ·Uk̄ = g · g−1 ·Ui = Ui and g ·Ul̄ = g · v̄ · r · v−1 ·Ui = w ·Ui = Uj. Table entries
are only altered if they were arguments to Coincidence once, hence C[k̄][g] ≈ i
and C[l̄][g] ≈ j. Either we already have C[k̄][g] = C[l̄][g] and i ≈ C[k̄][g] =

C[l̄][g] ≈ j gives i ≈ j. Or C[k̄][g] 6= C[l̄][g], in which case the algorithm calls
Coincidence(C[k̄][g], C[l̄][g]), and hence i ≈ C[k̄][g] ∼ C[l̄][g] ≈ j gives i ≈ j.

Every call to Coincidence removes the larger of the arguments completely from the
table entries. Therefore, when the algorithm ends, there is only one representative,
the smallest one, left for each equivalence class of ≡. The rows corresponding to
the other cosets are marked as merged. Especially, row 0 is not marked as merged.
Let U′i := π(Ui) for an i whose row is not marked as merged. The invariant
π(UC[i][g]) = π(g ·Ui) implies U′C[i][g] = π(g) ·U′, so C actually is the coset graph
of U′ = π(U), as required.

2.3 Run time analysis

In the following analysis I assume that the index of U in G is smaller than the
largest integer representable by a machine word and that the table entries are one
such machine word. Therefore, operations involving these numbers run in O(1)
and the table entries occupy O(1) pieces of storage.

The space complexity of the algorithm is very good, as it mostly just changes the
table it obtains as the input. This table has one row per coset of U ≤ G and two
columns per generator of G, thus a total number of [G : U] · 2 · r entries. The
marking of the rows can be done by writing invalid entries to the table rows,
otherwise an additional [G : U] bits of storage is required. The stack for the
recursive function Coincidence requires constant storage for the arguments and is
at most [G : U]− 2 levels deep.

As to the time complexity of the algorithm: The outer main loop is executed at most
[G : U] times, and less if some rows are marked as merged. Inside the loop, each
relation w ∈ R is traced in the table, which takes |w| steps of constant time. Each
call to Coincidence iterates through the whole table, requiring [G : U] · 2 · r steps
of constant time each. Additionally, it compares the 2 · 2 · r entries of the two rows,
possibly calling Coincidence. The total number of calls to Coincidence, no matter

26

2.3 Run time analysis

from where the function is called, is [G : U]− [G′ : U′], as each call to Coincidence

marks exactly one row as merged. Therefore, the total run time complexity is

O
(
[G : U] · ∑

w∈R
|w|+ ([G : U]− [G′ : U′]) · ([G : U] · 2 · r + 2 · 2 · r)

)
which can be simplified in the O-calculus to

O
(
[G : U] · ∑

w∈R
|w|+ [G : U]2 · r

)
.

2.3.1 Improved data structures

As a possible optimization, one can skip updating the whole table inside the
function Coincidence if one maintains an array A of [G : U] entries, initially
mapping each coset number to itself. This variant is provided in pseudocode in
Algorithm 3 on the following page. The array A or, more precisely, the function
AccA used to access values from A maps each coset to the equivalent coset with the
lowest coset number found so far. At the end of the algorithm, it will map each
coset to the lowest representative of its equivalence class with respect to ≡.

Therefore, the main loop needs to call Coincidence only if two related cosets are
not already found to be related, i.e. they do not map to the same coset via A.

Each call to Coincidence(i, j) with i < j sets the array entry A[j] to i. The arguments
to Coincidence are always lowest representatives, i.e. from the image of AccA.
Instead of directly comparing the values C[i][g] with C[j][g] the algorithm compares
their images under the function AccA. This does not change the semantics of the
algorithm, but the run time cost for each call to Coincidence is reduced to O(r).

Immediately after a call to AccA(i), A[i] is set to the result of AccA[i], so direct array
access is allowed then. When accessing the array A at position j, the function AccA

first checks if either A[j] = j or AccA(A[j]) = A[j]. If that is not the case, it sets
A[j] to the result of the recursive lookup A[A[j]]. Note that the condition of the
if-clause calls AccA(A[i]) recursively and thus, A[A[i]] can be accessed directly in
the body of the if-clause. This way, AccA(j) always returns the number that the
unoptimized algorithm would have put in place of j in the table, and each entry is
kept up-to-date to avoid unnecessary recursive lookups.

We want to count the calls to AccA from other parts of the program as constant-time
operations. This is correct unless AccA calls itself recursively. Therefore, we have to

27

2 The CosetProject algorithm

Algorithm 3: CosetProject algorithm (variant 1)
Input: Generators (gi)i=1,...,r of a group G
Input: The coset table C of a subgroup U ≤ G
Input: Relations R describing the quotient group G′ := G/〈〈R〉〉
Output: The coset table of the image U′ of U in G′

Let X be the set of generators of G and their inverses.
Let A be an array of len(C) elements.
forall i ∈ {0, . . . , len(A)− 1} do A[i]← i

forall cosets numbers i ∈ {0, . . . , len(C)− 1} do
if row i in C is not marked as merged then

forall relations w ∈ R do
Trace w in C starting with coset i, let j be the resulting coset.
if AccA(i) 6= AccA(j) then Coincidence(A[i], A[j])

return map(AccA, C).

function Coincidence (i,j) begin
if j < i then Coincidence (j,i)
else

A[j]← i
forall g ∈ X do

if AccA(C[i][g]) 6= AccA(C[j][g]) then
Coincidence(A[C[i][g]], A[C[j][g]])

Mark row j in C as merged.

end

function AccA(i) begin
if i 6= A[i] ∧ A[i] 6= AccA(A[i]) then

A[i]← A[A[i]]
Return A[i].

end

28

2.4 Preimage calculation

report the time spent inside recursive calls to AccA separately. Each of the [G : U]

entries of A is changed at most [G : U]/[G′ : U′] times, as that many cosets of U are
mapped to the same coset of U′. Hence, up to [G : U] · [G : U]/[G′ : U′] recursive
calls to AccA may occur.

This gives a total run time of

O
(
[G : U] · ∑

w∈R
|w|+ [G : U] · r + [G : U] · [G : U]

[G′ : U′]

)
.

2.4 Preimage calculation

The CosetProject algorithm in the present form calculates a coset table of the image
subgroup U′ ≤ G′. This also gives the index [G′ : U′] and can be used to efficiently
decide for an element of w ∈ G′, given as a word in the generators, whether it is
in U′. In some applications, this is not enough and we would also want to know
a preimage of w under π that lies in U. In general, using the same word is not
sufficient: In the coset graph of U ≤ G, this might trace to a coset other than U,
which also happens to be mapped to U′ by π.

The algorithm can be extended in a straight forward manner to remember, for each
coset Ui of U, a word wi ∈ G such that UA[i] = wi ·Ui. Then, given a word w ∈ U′

that traces from U to Ui in the coset graph of U, wi · w is a preimage of w that lies
in U.

The modified algorithm, based on the optimized variant Algorithm 3, is outlined in
Algorithm 4 on the next page. Besides the array W, a new parameter to the function
Coincidence is introduced.

The correctness of the extended algorithm follows from the following invariant
involving the array W:

UA[i] = W[i] ·Ui

The invariant holds after the initialization of the arrays. A and W are always
changed together: Either in Coincidence, or in AccA. In the body of the if-clause in
AccA, let A′ and W ′ denote the arrays after the modification. We have, by using the
invariant twice,

UA′[i] = UA[A[i]] = W[A[i]] ·UA[i] = W[A[i]] ·W[i] ·Ui = W ′[i] ·Ui

29

2 The CosetProject algorithm

Algorithm 4: CosetProject algorithm (variant 2, preimage calculation)
Input: Generators (gi)i=1,...,r of a group G
Input: The coset table C of a subgroup U ≤ G
Input: Relations R describing the quotient group G′ := G/〈〈R〉〉
Output: The coset table of the image U′ of U in G′

Output: An array A of len(C) indexes such that π(Ui) = π(UA[i])

Output: An array W of len(C) words such that UA[i] = W[i] ·Ui

Let X be the set of generators and their inverses.
Let A be an array of len(C) elements.
forall i ∈ {0, . . . , len(A)− 1} do A[i]← i
Let W be an array of len(C) elements, each initialized to the empty word.

forall cosets numbers i ∈ {0, . . . , len(C)− 1} do
if row i in C is not marked as merged then

forall relations w ∈ R do
Trace w in C starting with coset i, let j be the resulting coset.
if AccA(i) 6= AccA(j) then

Coincidence(A[i], A[j], W[i] · w−1 ·W[j]−1)

Return map(AccA, C), A and W.

function Coincidence(i, j, w) begin
if j < i then Coincidence(j, i, w−1)

else
A[j]← i
W[j]← w
forall g ∈ X do

if AccA(C[i][g]) 6= AccA(C[j][g]) then
w′ ←W[C[i][g]] · g · w · g−1 ·W[C[j][g]]−1

Coincidence(A[C[i][g]], A[C[j][g]], w′)

Mark row j in C as merged.

end

function AccA(i) begin
if i 6= A[i] ∧ A[i] 6= AccA(A[i]) then

W[i]←W[A[i]] ·W[i]
A[i]← A[A[i]]

Return A[i].
end

30

2.5 Application to the automorphism group

and thus the invariant is preserved.

When the function Coincidence is called from the main loop, j was chosen by
Uj = w ·Ui, hence Ui = w−1 ·Uj. Let i′ = A[i], j′ = A[j] and w′ = W[i] · w−1 ·
W[j]−1 be the arguments passed to Coincidence. By invoking the invariant, we
find that they fulfill the condition Ui′ = w′ ·Uj′ :

w′ ·Uj′ = (W[i] · w−1 ·W[j]−1) ·UA[j]

= W[i] · w−1 ·W[j]−1 ·W[j] ·Uj

= W[i] · w−1 ·Uj

= W[i] ·Ui

= UA[i]

= Ui′

In a call to Coincidence(i, j, w), assume Ui = w ·Uj. This means that the invariant
is preserved after updating the array A and W. When Coincidence is now called
recursively, a similar calculation shows that the arguments again fulfill the assumed
condition:

w′ ·UA[C[j][g]] = W[C[i][g]] · g · w · g−1 ·W[C[j][g]]−1 ·UA[C[j][g]

= W[C[i][g]] · g · w · g−1 ·W[C[j][g]]−1 ·W[C[j][g]] ·UC[j][g]

= W[C[i][g]] · g · w · g−1 ·UC[j][g]

= W[C[i][g]] · g · w · g−1 · g ·Uj

= W[C[i][g]] · g · w ·Uj

= W[C[i][g]] · g ·Ui

= W[C[i][g]] ·UC[i][g]

= UA[C[i][g]]

By induction, this shows that the condition Ui = w ·Uj holds for all calls to the
function Coincidence(i, j, w). Hence, the invariant is preserved inside calls to
Coincidence as well and the array contains the desired information.

2.5 Application to the automorphism group

In the preceding sections, we assumed that the preimage group G and the image
group G′ were given with the same generators and G′ could be considered a

31

2 The CosetProject algorithm

quotient group of G by the normal closure of the additional relations. In the
application described at the beginning of this chapter, this is unfortunately not
the case: Subgroups of Aut(Fr) are given by their coset graph with respect to the
generators τ1, σ1 2, . . . , σr−1 r, η (see Table 1 on page 16), while we would like to use
the generators Xij, i 6= j, when referring to subgroups of SLr(Z).

Additionally we want, for a subgroup U ≤ Aut(Fr), to calculate B(U) ∩ SLr(Z), so
we have to implement the intersection of a subgroup, given by its coset graph, with
an index two subgroup.

Depending on whether we utilize the Todd-Coxeter algorithm or the CosetProject
algorithm, different steps have to be taken. These are outlined here and explained
below.

When using the Todd-Coxeter algorithm, the steps are:

1. Calculate generators of U ∩Aut+(Fr) via Lemma 1.

2. Map generators of the subset U ∩Aut+(Fr) through B.

3. Calculate the coset graph using the Todd-Coxeter algorithm.

When using the CosetProject algorithms, the steps are

1. Using Algorithm 5, create a coset graph of U ∩Aut+(Fr) ≤ Aut+(Fr).

2. Apply the CosetProject algorithm to the coset graph of U ∩Aut+(Fr) to obtain
the coset graph of B(U) ∩ SLr(Z) ≤ SLr(Z).

3. Rewrite the coset graph in terms of the desired generators using Algorithm 5.

2.5.1 Index two subgroup intersection

Lemma 1 Let S ≤ G be a subgroup with index 2. Let U ≤ G be a subgroup generated
by h1, . . . , hn ∈ G with U 6≤ S. Without loss of generality, assume that there is an
m ∈ {1, . . . , n} such that h1, . . . , hm ∈ G \ S and hm+1, . . . , hn ∈ S.

The subgroup U ∩ S ≤ G is generated by the set

{h2
i , hi · h−1

1 | i = 1, . . . , m} ∪ {hi, h1 · hi · h−1
1 | i = m + 1, . . . , n}.

32

2.5 Application to the automorphism group

PROOF Let w be a word in the generators h1, . . . , hn such that w ∈ U ∩ S and
without loss of generality assume that w 6= Id and that any proper prefix of w is in
U \ S (otherwise split w after the prefix and apply the proof to both parts).

If w has length 1, it is already one of the generators hm+1, . . . , hn or their inverses.

If w has length 2, it is a product hεi
i · h

ε j
j with ε i, ε j ∈ {−1, 1} and i, j ∈ {1, . . . , m}. If

ε i = ε j = 1, w is generated by the given generators by

w = hi · hj = hi · h−1
1 · (hj · h−1

1)−1 · h2
j .

The other cases are obtained by multiplying with (h2
i)
−1 from the left respectively

with (h2
j)
−1 from the right.

If the length of w exceeds 2, assume that the proposition holds for shorter words.
The first letter of w is one of h1, . . . , hm or their inverses, and the second letter is
one of hm+1, . . . , hn or their inverses, because no proper prefix of w is in U \ S. So
w = hεi

i · h
εk
k · w′ for some ε i, ε j ∈ {−1, 1} and w′ ∈ G. By writing

hi · hεk
k · w

′ = (hi · h−1
1) · (h1 · hk · h−1

1)εk · h1 · w′

and prepending (h2
i)
−1 if ε i = −1 the problem is reduced to the shorter word h1 ·w′

and due to the induction hypothesis, w can be written as a product of the alleged
generators. �

If one works with the Todd-Coxeter algorithm, subgroups are initially represented
by a generating set. So the generators h1, . . . , hn of U ≤ Aut(Fr) can be mapped
through B to obtain a generating set B(h1), . . . , B(hn) of B(U) ≤ GLr(Z). Using
Lemma 1, we obtain a generating set of B(U) ∩ SLr(Z), which can be fed to the
Todd-Coxeter algorithm to obtain the coset graph of B(U) ∩ SLr(Z) ≤ SLr(Z).

For the CosetProject algorithm it is convenient to first intersect U with Aut+(Fr),
which is the preimage of SLr(Z) under B, and then rewrite the coset graph of
U ∩ Aut+(Fr) using preimages of the generators Xij, i 6= j (see Example 4 on
page 10).

A set of generators of Aut+(Fr) is, by Lemma 1,

{τ2
1 , τ1 · τ−1

1 } ∪ {σ
2
i (i+1), σi (i+1) · τ−1

1 | i ∈ {1, . . . , r− 1}} ∪ {η2, η · τ−1
1 },

which can be simplified to the r generators

{σi (i+1) · τ1 | i ∈ {1, . . . , r− 1}} ∪ {η · τ1},

as each generator is involutory.

33

2 The CosetProject algorithm

B(σ1 2 · τ1) =

 0 1
−1 0

1


= X−1

21 · X12 · X−1
21

B(σi i+1 · τ1) =

−1
0 1
1 0

 =

−1
1
−1

 ·
1

0 1
−1 0

 (for 1 < i < r)

= (X−1
i+1 1 · X1 i+1 · X−2

i+1 1 · X1 i+1 · X−1
i+1 1) · (X−1

i+1 i · Xi i+1 · X−1
i+1 i)

B(η · τ1) =

−1 0
1 −1

1


= X−2

21 · X12 · X−2
21 · X12 · X−1

21

Table 7: The map B in terms of generators

2.5.2 The map B in terms of generators

For the second step when using Todd-Coxeter, we apply the map B to automor-
phisms given as words in (σ1 2 · τ1), . . . , (σr−1 r · τ1), (η · τ1) and expect results in
the generators Xij, i 6= j. The map-defining generator images can be found by
experimenting with the Sury generators, and are given in Table 7. The matrices are
those in the case of r = 3 and serve exemplification purposes.

No such explicit mapping is required when going the CosetProject path, as the
mapping step does not change the used generators. The transformation happens in
the invocation of Algorithm 5, using the equations from Section 2.5.4.

2.5.3 Subgroup intersection and coset graphs

To intersect the subgroup U ≤ Aut(Fr), represented by its coset graph with regard
to the generators τ1, σ1 2, . . . , σ(r−1) r, η, with Aut+(Fr), one can use Algorithm 5.
Given the coset graph of U and the generators of Aut+(Fr), it does a breadth-first
search to re-assemble the coset graph of U ∩Aut+(Fr) ≤ Aut+(Fr) with respect

34

2.5 Application to the automorphism group

to the correct generators. The resulting coset table might be sparse and could be
compressed by moving the rows “up” to fill the empty spots left over by unused
lines before returning it.

Algorithm 5: Subgroup intersection algorithm
Input: Generators (gi)i=1,...,r of a group G
Input: The coset table C of a subgroup U ≤ G
Input: Generators (hi)i=1,...,s of a subgroup S ≤ G, as words in the gi
Output: The coset table of the intersection U ∩ S ≤ S

Let Y be the set of generators of S and their inverses.
Let C′ be an empty coset table with |C| rows and columns labeled by the
elements of Y.
Let q be a first-in-first-out queue, initialized with (0).
Let d be a set, initialized with {0}.
while q is not empty do

i← pop(q)
forall h ∈ Y do

Trace h in C starting with coset i, let j be the resulting coset.
C′[i][h]← j
if j /∈ d then

push(q, j)
d← d ∪ {j}

return C′.

2.5.4 Generator rewriting

We have a presentation of SLr(Z) in terms of the generators Xij, i 6= j, and relations
between these generators [Sur03, Theorem 4-3.2]. To turn this into a presentation
with regard to the generators

{B(σi (i+1) · τ1) | i ∈ {1, . . . , r− 1}} ∪ {B(η · τ1)},

we have to rewrite the given relations as products of these generators. To do so, it
is sufficient to replace each Xij by a product of these generators.

To find these products, we first write them as products of images of τ1, σ12, . . . ,
σr−1 r, η under B as follows: As the base case, we have

X21 = B(τ2 · η) = B(σ12 · τ1 · σ12 · η)

and
X12 = B(σ12) · X21 · B(σ12).

35

2 The CosetProject algorithm

An elementary matrix Xij with i > j, can then be written as

Xij = B
(
σj−1 j · · · σ12 · σi−1 i · · · σ23

)
· X21 · B

(
σ23 · · · σi−1 i · σ12 · · · σj−1 j

)
and an elementary Xij with i < j can be written as

Xij = B
(
σi−1 i · · · σ12 · σj−1 j · · · σ23

)
· X12 · B

(
σ23 · · · σj−1 j · σ12 · · · σi−1 i

)
.

To turn these products of images of τ1, σ12, . . . , σr−1 r, η under B into products of
images of (σ12 · τ1), . . . , (σr−1 r · τ1), (η · τ1) under B as required, one can proceed as
in the proof of Lemma 1. Since these generators of Aut(Fr) are involutory, this boils
down to replace pairs of generators according to the following identities, where g1

and g2 stand for one of σ12, . . . , σr−1 r, η:

τ1 · τ1 = Id

g1 · τ1 = (g1 · τ1)

τ1 · g1 = (g1 · τ1)
−1

g1 · g2 = (g1 · τ1) · (g2 · τ1)
−1.

Applying the CosetProject algorithm to the coset graph of U∩Aut+(Fr) ≤ Aut+(Fr)

with the relations rewritten in terms of these generators gives a coset graph of
B(U) ∩ SLr(Z) ≤ SLr(Z). As a last step, Algorithm 5 can be used to transform this
coset graph into a coset graph with regard to the generators Xij. In this invocation
of the algorithm, the group G is SLr(Z) with generators B(σ12 · τ1), . . . , B(σr−1 r ·
τ1), B(η · τ1), the subgroup S is the full group SLr(Z) and the subgroup generators
(hi)i=1,...,s are the elementary matrices Xij, i 6= j, written in terms of the group
generators as explained above.

2.6 Congruence level

To detect the congruence level of a subgroup U ≤ SLr(Z), given its coset graph,
we use the fact that the principal congruence subgroup of level l is the normal
subgroup generated by Xl

12: [Sur03, Proof of Theorem 4-4.2]

Γl = 〈〈Xl
12〉〉.

Therefore, to check Γl ≤ U, it is sufficient to check whether Xl
12 ∈ wUw−1 for all

w ∈ U. As the coset graphs of conjugates of U are obtained from the coset graph of

36

2.7 Results

U by taking another node as the origin (Remark 5), we trace the word Xl
12 from each

coset Ui of U and check if we end up at Ui. Trying this procedure for l = 1, 2, . . .
until we succeed, we calculate the congruence level of U. This procedure is given
in pseudocode in Algorithm 6.

Algorithm 6: Congruence level detection
Input: The coset table C of a subgroup U ≤ SLr(Z)

Output: The congruence level l of U

l ← 1
while true do

ok← 1
forall i ∈ {0, . . . , len(C)} do

Trace Xl
12 in C starting with coset i, let j be the resulting coset.

if j 6= i then ok← 0

if ok = 1 then
return l

else
l ← l + 1

2.7 Results

The algorithm from the previous section was used in combination with the algo-
rithm found in [Fre08] to calculate the congruence levels of B(StabAut(Fr)(U)) ∩
SLr(Z) for all subgroups U ≤ Fr with a given index i, for approachable values of r
and i. The results are printed in Table 8 on the next page. Unfortunately, both the
number of subgroups and the index of StabAut(Fr)(U) grow very fast, so not many
samples were obtained. In the case of the index 4 subgroups of F3 and the index 3
subgroups of F5, the program was stopped before handling all subgroups.

Although only low congruence levels are found in this sample, any congruence
level is reached (see Section 3.9).

Eventually, working on this problem and inspecting the results gave the ideas and
hints that led to the definition of loop subgroups and the results presented in the
next chapter.

37

2 The CosetProject algorithm

r [F r
: U

]
[A

ut(F
r)

: S
ta

b Aut(F
r)
(U
)]

[S
L r(
Z
)

: B
(S

ta
b Aut(F

r)
(U
))
]

co
ng

ru
en

ce
lev

el
of

B(
St

ab
Aut(F

r)
)
(U
)

3 1 1 1 1

2 7 7 2

3 84 7 2
13 13 3

4 7 7 2
28 28 4

260 13 3
168 42 2

1680 7 2

4 1 1 1 1

2 15 15 2

3 585 15 2
40 40 3

5 1 1 1 1

2 31 31 2

3 3720 31 2
121 121 3

Table 8: Some occurring congruence levels

38

CHAPTER 3

The loop subgroups

IN this chapter, we will study loop subgroups of the free group Fr for r ≥ 3. This class
of subgroups stands out because the image of its stabilizer group in GLr(Z) is

fully calculable. Loop subgroups are quite particular among the general subgroups,
but there are legitimate reasons to assume that the results for loop subgroups can
be generalized, as discussed in the last section.

3.1 Definition of loop subgroups

Let Fr be the free group with generators g1 = x, g2 = y, g3 = z, g4, . . . , gr. The
s1/ . . . /sr loop subgroup U, si ∈ N, is the subgroup with the distinct left cosets

N := {U, g1
1U, . . . , gs1−1

1 U, g1
2U, . . . , gs2−1

2 U, . . . , g1
r U, . . . , gsr−1

r U}

and the following edges in its left coset graph

U
gi−→ g1

i U ∀i = 1, . . . , r,

gk
i U

gi−→ gk+1
i U ∀i = 1, . . . , r, k = 1, . . . , si − 2,

gsi−1
i U

gi−→ U ∀i = 1, . . . , r,

gk
j U

gi−→ gk
j U ∀i, j = 1, . . . , r, j 6= i, k = 1, . . . , sj − 1.

39

3 The loop subgroups

The sequence of nodes U, g1
i U, . . . , gsi−1

i U, U is called a loop. si is the length of the
loop. A loop is called odd (resp. even) if its length is odd (resp. even). A loop of
length 1 is called a looplet1.

The reason for this nomenclature becomes evident if we draw the coset graph of a
loop subgroup:

Example 6 The coset graph of the 3/3/1 loop subgroup of F3, a subgroup with
only odd loops and one looplet, is shown in Figure 3.

U

y1U

y2U

y

y

y

z, x

z, x

x1U

x2U

x

x

x

z, y

z, y

z

Figure 3: The left coset graph of the 3/3/1 loop subgroup of F3.

The s1/ . . . /sr loop subgroup of Fr is generated by the the following set of words
in Fr:

{gsi
i , i = 1, . . . , r} ∪ {g−k

i gjg
k
i , i, j = 1, . . . , r, i 6= j, k = 1, . . . , si − 1.}.

This set actually is a basis of U as a free group, as the number of generators is

r +
r

∑
i=1

(r− 1) · (si − 1) = r− 1 + 1 + (r− 1)
r

∑
i=1

(si − 1)

= (r− 1)(1 +
r

∑
i=1

(si − 1)) + 1

= (r− 1)[Fr : U] + 1,

which is the number of basis elements of a subgroup of Fr with this index.

1The German language allows to build diminutive forms of almost all nouns by appending the
suffix -chen. I take the liberty to do the same in English, as it makes the text easier and more
pleasant to read than if I had named them small loops.

40

3.2 Preparations

3.2 Preparations

Before we now start investigating loop subgroups, some preparational definitions
and calculations are due.

3.2.1 Permutations of cosets

In what follows it will often be handy to consider how elements of Fr act on the
coset graph of a subgroup U. To make this explicit, let Sym(N) be the symmetric
group on the set N of left cosets of U, and define the group homomorphism

π : Fr → Sym(N),

which assigns to the word w ∈ Fr the permutation π(w) which maps vU to wvU:

π(w)(vU) := wvU.

We can find out a few things about a word w ∈ Fr by looking at its permutation in
Sym(N). We have

π(w)(U) = U ⇐⇒ w ∈ U.

Furthermore, we have

π(w) = Id ⇐⇒ w ∈ NT(U) :=
⋂

v∈Fr

v−1Uv.

To bring automorphisms into this picture, we first note that any γ ∈ StabAut(Fr)(U)

maps left cosets of U to left cosets of U:

γ(w)U = γ(v)U ⇐⇒ γ(v−1w) ∈ U ⇐⇒ v−1w ∈ U ⇐⇒ wU = vU

Therefore, we can also assign the whole automorphism γ a permutation in Sym(N)

which we denote, by abuse of notation, with π(γ):

π(γ)(vU) := γ(v)U.

Note that π(γ)−1(vU) = γ−1(v)U. This allows us to formulate the next state-
ment:

Lemma 2 For U ≤ Fr, γ ∈ StabAut(Fr)(U) and w ∈ Fr, π(γ(w)) is conjugate to π(w).

41

3 The loop subgroups

PROOF Using the notation introduced above, for any v ∈ Fr we have

π(γ(w))(vU) = γ(w)vU

= γ(w · γ−1(v))U

= π(γ)
(
w · γ−1(v)U

)
= π(γ)

(
w · π(γ)−1(vU)

)
= π(γ)

(
π(w)

(
π(γ)−1(vU)

))
=
(
π(γ) ◦ π(w) ◦ π(γ)−1)(vU)

thus π(γ(w)) = π(γ) ◦ π(w) ◦ π(γ)−1. �

Remark 6 A map γ : Fr → Fr defined by

γ(gj) =

{
wgi, if j = i

gj, if j 6= i

is an automorphism if the generator gi does not occur as a letter in the word w, i.e.
w ∈ 〈g1, . . . , gi−1, gi+1, . . . , gr〉. It stabilizes the subgroup U if w ∈ NT(U), as then
π(w) = Id holds, implying π(γ(v)) = π(v) and thus γ(v) ∈ U ⇐⇒ v ∈ U.

Lemma 3 The index [Aut(Fr) : StabAut(Fr)(U)] of the stabilizer subgroup of U goes to
infinity as the index [Fr : U] of the loop subgroup goes to infinity.

PROOF For i, j ∈ {1, . . . , r}, i 6= j and si > 1 consider the automorphism γ ∈
Aut(Fr) defined by

γ(gk) :=

{
gjgi, if k = j

gk, if k 6= j.

Let n ∈ {1, . . . , si − 1}. The n-th power of γ is given by

γn(gk) =

{
gjgn

i , if k = j

gk, if k 6= j.

The permutation π(gi) is a cycle of length si, hence π(gi)
n is also a cycle of length

si and one can be obtained from the other by renaming the entries of the cycle.
Written formally, there exists a permutation σ ∈ Sym(N) with π(si)

n = σπ(si)σ
−1

and σ(U) = U [Bos06, Abschnitt 5.3, Aufgabe 6]. Note that σ and π(sj) permute.

We have g
sj
j ∈ U. To check whether γn(g

sj
j) is in U, we calculate

π(γn(g
sj
j)) = π(gjgn

i)
sj = (π(gj)π(gi)

n)sj = (π(gj)σπ(si)σ
−1)sj

= (σπ(gj)π(si)σ
−1)sj = σ(π(gjgi))

sj σ−1

42

3.2 Preparations

thus

γ(g
sj
j) ∈ U ⇐⇒ π(γ(g

sj
j))(U) = U ⇐⇒ σ(π(gjgi))

sj σ−1(U) = U

⇐⇒ π((gjgi)
sj)(U) = U ⇐⇒ (gjgi)

sj ∈ U

By consulting the coset graph of U, we know (gjgi)
sj−1gj ∈ U and gi /∈ U, as si > 1,

so γn(g
sj
j) /∈ U and γn /∈ StabAut(Fr)(U).

Since γn /∈ StabAut(Fr)(U) for 1 ≤ n < si, the index of the stabilizer subgroup must
be larger than si − 1. Hence,

[Aut(Fr) : StabAut(Fr)(U)] ≥ max
i∈{1,...,r}

si → ∞

as [Fr : U]→ ∞. �

The following fact about permutations will be very useful for our later calculations:

Lemma 4 Let σ, ω ∈ Sn be permutations of the form

σ = (1, 2, . . . , m) and ω = (1, m + 1, . . . , n)

with 1 < m < n. Then all even permutations are in the commutator subgroup of the group
generated by σ and ω, i.e. they can be written as a product of commutations of σ and ω:

An ≤ [〈σ, ω〉, 〈σ, ω〉]

where An is the alternating group of degree n and [G, G] denotes the commutator subgroup
of G.

PROOF The alternating group An, n ≥ 3, is generated by all three-cycles in Sn

[Bos06, section 5.3, Satz 3]. We first generate all three-cycles which do not fix the 1.
These are cycles of the form (1, i, j). There are four cases:

• 1 < j ≤ m and m < i ≤ n. In this case, we take the inverse and enter the next
case.

• 1 < i ≤ m and m < j ≤ n. We write the cycle using commutators of ω and σ:

(1, i, j) = σi−1 ◦ω j−m ◦ σ−(i−1) ◦ω−(j−m)

• 1 < i ≤ m and 1 < j ≤ m. We can reduce this case to the previous by writing:

(1, i, j) = (1, j, m + 1)−1 ◦ (1, i, m + 1)

43

3 The loop subgroups

• m < i ≤ n and m < j ≤ n. This case works analogously to the previous case:

(1, i, j) = (1, 2, j) ◦ (1, 2, i)−1

Observe that ω ◦ σ = (1, 2, . . . , n). If we now have a general three-cycle (k, i, j), it is
conjugate to a three-cycle that moves the 1:

(k, i, j) = (ω ◦ σ)k−1 ◦ (1, i− (k− 1), j− (k− 1)) ◦ (ω ◦ σ)−(k−1)

So we can write any even permutation in Sn as a product of ω’s and σ’s, such
that for either of the two generators, the sum of its occurrences, counting negative
powers negatively, is zero. �

3.2.2 The linear group and the principal congruence subgroup

The elementary matrix Xij ∈ GLr(Z), i 6= j, is the matrix with ones on the diagonal,
one additional one in the i-th row and j-th column and zeroes everywhere else. The
elementary matrices generate SLr(Z) [Sur03, Theorem 4-3.2]. Another generating
set is

{Xik, k 6= i} ∪ {Xji, j 6= i}

for a fixed i. This follows from the relations [Xji, Xik] = Xjk for j 6= k [Sur03,
Theorem 4-3.2].

The matrix Ti := Diag(1, . . . , 1,−1, 1, . . . , 1) is defined as the identity matrix with
the exception of one −1 on the diagonal in the i-th row. The index of SLr(Z) in
GLr(Z) is 2, thus together with T1 either of the generating sets above generate the
whole group GLr(Z).

A similar result for the principal congruence subgroup requires some calculations
and therefore, it is formulated as a lemma:

Lemma 5 The principal congruence subgroup of level 2 in GLr(Z)

Γ2 = {A ∈ GLr(Z) | A ≡ Id (mod 2)},

is generated by the set
{X2

ij, i 6= j} ∪ {Ti, i = 1, . . . , r}

of squares of elementary matrices and diagonal matrices which are the identity matrix with
the exception of one −1 on the diagonal.

44

3.2 Preparations

PROOF To show this, we transform a matrix M = (Mij) ∈ Γ2 to the identity matrix,
by multiplying it with the given generators. The idea of the proof is to apply the
idea behind the Euclidean algorithm. In this proof, Mij will always refer to the
current state of the matrix, including any transformation applied so far.

Multiplying the matrix X2
ij from the left has the effect of adding the j-th row twice

on the i-th row. Multiplying it from the right has the effect of adding the i-th column
twice on the j-th column. Multiplication from the left with the matrix Ti inverts the
signs of the entries in the i-th row.

Starting with the first column, we repeat the following step until the column is that
of the identity matrix:

Let i be a row with a smallest non-zero absolute value in the first column, and let j
be another row with a larger absolute value in the first column. Add the i-th row
on the j-th row 2k times, by multiplication of X2k

ji , with a k ∈ Z \ {0} such that
|Mj1 + 2kMi1| becomes as small as possible.

Note that if all entries in the first column but one are zero, this one value must be
±1, as it divides the determinant of the matrix. If there are more than one non-zero
entries, they can not be all of equal absolute value, as M11 is odd and the other
entries are even. Hence, we will always find such rows i and j.

Also, each step reduces the sum of the absolute values in the column ∑r
i=1 |Mi1|,

because |Mj1 + 2kMi1| < |Mj1|. As ∑r
i=1 |Mi1| is always positive, this algorithm

terminates when ∑r
i=1 |Mi1| = 1, which means, due to the invariant parity of the

entries, that the first column is (1, 0, . . . , 0)> or (−1, 0, . . . , 0)>.

If the upper right entry of the matrix is now −1, we multiply the matrix by T1. M11

is now 1. As all entries M1i, i > 1 in the first row of the matrix, besides the first one,
are even, we can now easily cancel them by multiplication from the right with

(X2
12)
−M12

2 · · · (X2
1r)
−M1r

2 .

to achieve that the first row and column are those of the identity matrix. Repeating
this procedure for the other columns as well, we obtain the identity matrix as a
product of the matrix M and the given generators. �

Corollary 1 The set

{Xik, k 6= i} ∪ {X2
ji, j 6= i} ∪ {Tj, j = 1, . . . , r}

for some fixed i ∈ {1, . . . , r} generates a superset of Γ2.

45

3 The loop subgroups

PROOF This can be shown using the following calculation, which uses the commu-
tator relations given in [Sur03], Theorem 4-3.2:

X2
jk = [Xji, Xik] · Xjk

= XjiXikX−1
ji X−1

ik · Xjk

= Xji · Xjk · XikX−1
ji X−1

ik

= Xji · [Xji, Xik] · XikX−1
ji X−1

ik

= XjiXjiXikX−1
ji X−1

ik XikX−1
ji X−1

ik

= X2
jiXikX−2

ij X−1
ik

= [X2
ji, Xik] �

3.3 The odd case

Before handling the most general case, we will first look at loop subgroups with
only odd loops, followed by those with only even loops. The case of loop subgroups
with mixed parity will then be easily accessible.

Theorem 1 For a loop subgroup U ≤ Fr, r ≥ 3, with all loops odd and at most r − 2
looplets, we have

B(StabAut(Fr)(U)) = GLr(Z),

where B : Aut(Fr)→ GLr(Z) is the map defined in the preface.

I extract the part of the proof that will be re-used in the general case in a statement
of its own:

Lemma 6 Let U ≤ Fr, r ≥ 3, be an s1/ . . . /sr-loop subgroup, i, j ∈ {1, . . . , r} with
i 6= j and si odd. If si = 1 or there exists k ∈ {1, . . . , r} with sk > 1, then

Xij ∈ B(StabAut(Fr)(U)).

PROOF (OF LEMMA 6) We construct a preimage of the elementary matrix Xij as a
map of the form

γij(gk) =

{
w · gi · gj, k = j

gk, k 6= j

with a suitable w ∈ Fr. By Remark 6, this is an automorphism that stabilizes U if
the generator gj does not occur in w and π(w · gi) = Id.

46

3.3 The odd case

To have B(γij) = Xij, the number of occurrences of all generators in w must be zero
each, that is w ∈ [Fr, Fr]. If the i-th loop actually is a looplet, we can choose w = Id,
as π(gi) = Id.

If si > 1, this is where our preliminary calculations about permutations kick in. gk
is another generator whose loop is not a looplet, i.e. sk > 1. If we only consider the
set of cosets of U that are on the loops i or k

Nik := {U, g1
i U, . . . , gsi−1

i U, g1
kU, . . . , gsk−1

k U}

we can interpret the permutations π(gi) and π(gk) as elements of Sym(Nik). We
are now in the situation of Lemma 4 with σ = π(gi) and ω = π(gk), hence
ANik ≤ π([〈gi, gk〉, 〈gi, gk〉]). Since π(gi) is a cycle of odd length si, it is itself
an even permutation, thus π(gi) ∈ ANik . This proves the existence of a word
w ∈ [〈gi, gk〉, 〈gi, gk〉] with π(w) = π(gi)

−1, that is π(w · gi) = Id. With this word,
the automorphism γij is indeed in StabAut(Fz)(U) and a preimage of Xij. �

PROOF (OF THEOREM 1) In order to show that the image of the stabilizer subgroup
of U is the full linear group, we will find preimages of a generating set of GLr(Z).
The automorphism τi ∈ Aut(Fr) that sends gi 7→ g−1

i and gj 7→ gj for j 6= i stabilizes
any loop subgroup, in particular U. Thus we have τ1 as a suitable preimage of T1

under B.

If there are at most r − 3 looplets in the loop subgroup, we can choose suitable
k ∈ {1, . . . , r} with sk > 1 for all i, j ∈ {1, . . . , r}, i 6= j. Thus we find preimages in
StabAut(Fz)(U) for all elementary matrices, by Lemma 6, and the proof is complete.

If there are r− 2 looplets, since r ≥ 3, there is at least one looplet, for example the
i-th. Now we can find preimages for the elements of the generating set

{Xik, k 6= i} ∪ {Xji, j 6= i}

of SLn(Z), concluding the proof: For the first set of matrices, Lemma 6 can be
applied since si = 1. For the second set either sj = 1 or there is a suitable k, as there
are two proper loops and the i-th is none of them, hence Lemma 6 can be applied.�

Example 7 For the 3/3/1 loop subgroup seen in Example 6 on page 40, the follow-
ing automorphisms are constructed:

γ31(x, y, z) = (z · x, y, z)

γ32(x, y, z) = (x, z · y, z)

γ13(x, y, z) = (x, y, yxy−1xyx−2y−1 · x · z)
γ23(x, y, z) = (x, y, xyx−1yxy−2x−1︸ ︷︷ ︸

∈[〈x,y〉,〈x,y〉]

·y · z).

47

3 The loop subgroups

3.4 The level

To get closer to the general case, we will now find a useful lower bound to the sub-
group B(StabAut(Fz)(U)). Once we know that the principal congruence subgroup
of level 2

Γ2 = {M ∈ GLr(Z) | M ≡ Id (mod 2)}
is contained in B(StabAut(Fz)(U)), we can consider the projection

B(StabAut(Fz)(U)) ≤ GLr(Z/2Z),

which still contains all information about the group.

The following set generates Γ2 according to Lemma 5:

{X2
ij, i 6= j} ∪ {Tj, j = 1, . . . , r}.

The set
{Xik, k 6= i} ∪ {X2

ji, j 6= i} ∪ {Tj, j = 1, . . . , r}
for some fixed i generates a superset of Γ2 (Corollary 1)

Lemma 7 For a loop subgroup U ≤ Fr, r ≥ 3, with at most r− 2 looplets, we have

Γ2 ≤ B(StabAut(Fr)(U)).

PROOF As in the proof for the odd case, Theorem 1, we will find preimages in
the stabilizer subgroup StabAut(Fz)(U) to the elements of a generating set of Γ2. As
preimages for the matrices {Tj, j = 1, . . . , r} we choose the same automorphisms τj,
which invert the j-th generator gj and do not modify the other generators.

We will find preimages of squares of elementary matrices X2
ij as maps γ

(2)
ij of the

form

γ
(2)
ij (gk) =

{
w · g2

i · gj, k = j

gk k 6= j.

The important fact to consider here is that while π(gi) may not be an even permu-
tation, π(g2

i) = π(gi)
2 ∈ AN certainly is. Therefore Lemma 4 provides us with a

suitable w ∈ Fr so that γ
(2)
ij ∈ StabAut(Fr) by Remark 6.

If we have at most r− 3 looplets, we find preimages to all squares of elementary
matrices this way. In the case of r− 2 looplets, we find, as above, preimages for
each of

{Xik, k 6= i} ∪ {X2
ji, j 6= i}

for a fixed i with si = 1. �

48

3.5 Stabilizer subgroups in GLr(Z/2Z)

3.5 Stabilizer subgroups in GLr(Z/2Z)

When we inspect the loop subgroup with even loops, we will come across the
group of integral matrices with odd column sums. It contains the principal con-
gruence subgroup of level 2, hence it is completely determined by its image in
GLr(Z/2Z):

S(1) := {M ∈ GLr(Z/2Z) | 1 ·M = 1}

where 1 = (1, . . . , 1) ∈ (Z/2Z)r is the row vector, all of whose entries are one.
More general, we will be interested in the stabilizer subgroup of a row vector
v = (v1, . . . , vr) ∈ (Z/2Z)r under the action of right multiplication:

S(v) := {M ∈ GLr(Z/2Z) | v ·M = v}

These are indeed groups, as Id ∈ S(v) and for M1, M2 ∈ S(v) we have v · (M1M2) =

(v · M1) · M2 = v · M2 = v and v = v · M1M−1
1 = v · M−1

1 . Of course we have
S(0) = GLr(Z/2Z).

3.5.1 Generators

Lemma 8 The group S(1) is generated by “double elementary matrices” of the form
XikXjk, i, j, k ∈ {1, . . . , r} pairwise distinct, having ones on the diagonal and in two
additional positions in the same column, and zeros everywhere else.

More general, S(v) is generated by the elementary matrices Xij for i 6= j and vi = 0
and the double elementary matrices XikXjk for i, j, k ∈ {1, . . . , r} pairwise distinct and
vi = vj = 1

Note that the case v = 0 is covered by the lemma, as S(0) = GLr(Z/2Z) is
generated by all the elementary matrices Xij, i 6= j. If the vector v is a unit vector,
i.e. precisely one entry is 1, the generating set does indeed not contain any double
elementary matrices.

PROOF What does the defining equation v ·M = v tell us? On the one hand, any
row i of the matrix where the corresponding entry vi in the row vector is zero does
not affect the equation at all and its entries are irrelevant. On the other hand, the
sum of all relevant entries in a column j is odd if and only if vj = 1. Therefore, the
alleged generators are indeed contained in S(v).

49

3 The loop subgroups

We first summarize the effect that multiplying one of these generators to an matrix in
S(v) has: The multiplication from the left of an elementary matrix Xij has the effect
of adding the j-th row on the i-th row. The multiplication from the left of a double
elementary matrix XikXjk has the effect of adding the k-th row simultaneously on
the i-th and the j-th row.

We will now transform a matrix in S(v) into the identity matrix by multiplying
the alleged generators from the left. To do so, we suppose that the first i − 1
columns are already that of the elementary matrix and treat each column i = 1, . . . , r
consecutively as follows:

1. Ensure that there is a 1 on the diagonal. If there is none, there still must be at
least one 1 in the column, otherwise the matrix would not be regular. There
even must be a 1 in a row j with j > i, as otherwise the current column would
be a linear combination of the columns to the left of it, which are, due to our
transformation, the unit vectors e1, . . . , ei−1.

Now add this row j on the i-th row (multiplication with Xij). If vi = 1, then,
to be allowed to do that, also add the j-th row on any other row k with vk = 1
(multiplication with XijXkj). This step does not alter the previous columns, as
the row j has zeros there.

If there is no such other row k, that is, if there are exactly two ones in the
vector v, namely vi = vj = 1, and if the current column has only one 1 in the
j-th row, some additional shuffling is necessary. Let k 6= i, j be any other row.
This implies vk = 0. The matrix

(XikXjk · Xki · Xkj)
2

is actually the permutation matrix that swaps the i-th and j-th row, and is
here written in terms of the given generators. Multiplying this matrix from
the left, we move the 1 to the right spot, while again not altering the previous
columns.

2. Eliminate all ones that are not on the diagonal. Ones that are in rows j
with vj = 0 can be eliminated directly with Xji. Ones in rows j and k with
vj = vk = 1 can only be eliminated pairwise with XjiXki. But in any case there
is an even number of them: Either vi = 0. Then we know that there is an even
number of ones on relevant rows to be eliminated. Or vi = 1, then there is an
odd number of relevant ones in this column. But the i-th row itself is relevant,
and we do not want to eliminate the one on the diagonal. This leaves an even
number of relevant ones to be eliminated.

50

3.5 Stabilizer subgroups in GLr(Z/2Z)

So any matrix in S(v) can be transformed into the identity matrix using the given
generators, thus they indeed generate all of S(v). �

3.5.2 Maximality

Although not strictly required for what follows, for a better understanding of the
subgroups S(v) we will now see that they are maximal if v 6= 0.

Lemma 9 Any subgroup S(v) ≤ GLr(Z/2Z) with v ∈ (Z/2Z)r \ {0} is conjugated to
S(1).

PROOF Let N ∈ GLr(Z/2Z) be a matrix with 1 · N = v. Then

S(v) = {M ∈ GLr(Z/2Z) | v ·M = v}
= {M ∈ GLr(Z/2Z) | 1 · N ·M = 1 · N}
= {M ∈ GLr(Z/2Z) | 1 · N ·M · N−1 = 1}
= {N−1 ·M′ · N ∈ GLr(Z/2Z) | 1 ·M′· = 1}
= N−1S(1)N. �

Lemma 10 Any subgroup S(v) ≤ GLr(Z/2Z), r ≥ 3, with v ∈ (Z/2Z)r \ {0} is
maximal, that is, there is no proper subgroup of GLr(Z/2Z) that is a proper supergroup of
S(v).

PROOF Due to Lemma 9 it is sufficient to show that S(1) is maximal. To show
this we take a matrix M /∈ S(1) and transform it into an elementary matrix by
multiplying it with matrices in S(1). Since S(1) also contains the permutation
matrices, we then get all elementary matrices and thus the full group GLr(Z/2Z).

As established in the previous section, multiplication from the left with a double
elementary matrix XikXjk has the effect of adding the k-th row on the i-th and on
the j-th row. Multiplication from the left with a permutation matrix swaps rows.
Multiplication from the right with XikXjk has the effect of replacing the k-th column
with the sum of the k-th, i-th and j-th columns. The permutation matrices swap the
columns when multiplied from the right.

The matrix M has at least one column with an even column sum, otherwise we had
M ∈ S(1). It also has at least one column with an odd column sum. Otherwise M
would map the standard basis vectors to vectors with even sums. But these would
not span all of (Z/2Z)r, as the sum of two such vectors has again even sum. By
swapping the columns we can ensure that the first column has an odd column sum

51

3 The loop subgroups

and the last column has an even column sum. Then we make all column sums in
between odd: If column j, 1 < j < r has an even column sum we multiply from
the right with X1jXrj. This replaces this column by the sum of the first, j-th and last
column, which then has, as required, odd column sum.

Now we proceed by running the Gaussian Elimination Algorithm for the first
r − 1 columns, as done in the previous section. Since all these columns have an
odd column sum, this is possible using transformations which are represented by
matrices in S(1). Hence, we obtain a matrix of the form

1 0 · · · 0 ∗

0
.

...
...

...
. 0

...
...

. . . 1 ∗
0 · · · · · · 0 1


.

�

The transformations did not alter the parity of the column sums, thus the last
column still has an even sum of 2k + 2 for some k ∈ N. By adding the last row
to 2k of the other rows having a one in the last column, which is possible with
matrices from S(1), we eliminate all but two ones in the last column. This is then
an elementary matrix, finishing this proof.

3.6 The even case

With the knowledge about S(1) from the previous section we can find out more
about the image of stabilizer subgroups of loop subgroups with all loops even.

Theorem 2 For a loop subgroup U ≤ Fr, r ≥ 3, with all loops even, we have

S(1) ≤ B(StabAut(Fr)(U))

PROOF The set of double elementary matrices XikXjk generate S(1). By the follow-
ing lemma, these are in B(StabAut(Fr)(U)). �

Lemma 11 Let U ≤ Fr, r ≥ 3 be an s1/ . . . /sr-loop subgroup and i, j, k ∈ {1, . . . , r}
distinct with si and sj even. Then

XikXjk ∈ B(StabAut(Fr)(U)).

52

3.7 The mixed case

PROOF We again vary the construction that led us to preimages of generators of
GLr(Z) in the odd case (Lemma 6) and of Γ2 when calculating the level (Lemma 7).
This means that we find automorphisms γijk of the form

γijk(gl) =

{
w · gigj · gk, l = k

gl , l 6= k.

such that γijk is a preimage of XikXjk. The conditions under which these are actually
automorphisms, and under which they stabilize U are given by Remark 6. We know
that the cycles π(gi) and π(gj) are both of even length, thus odd permutations.
Therefore, their product π(gigj) ∈ AN and with Lemma 4 we can find a suitable
w ∈ [〈gi, gj〉, 〈gi, gj〉]. �

3.7 The mixed case

If we combine the proofs for the odd and the even case, we can find an analogous
result for general loop subgroups.

Theorem 3 For a loop subgroup U ≤ Fr, r ≥ 3, with at most r− 2 looplets, we have

S(v) ≤ B(StabAut(Fr)(U))

where

vi =

{
0, if si odd

1, if si even.

PROOF By Lemma 8, S(v) is generated by the elementary matrices Xij for i 6= j and
vi = 0 and the double elementary matrices XikXjk for vi = vj = 1.

The double elementary matrices XikXjk are in B(StabAut(Fr)(U)) for vi = vj = 1, as
shown in Lemma 11.

Let i, j ∈ {1, . . . , r}, i 6= j and vi = 0. We need to show Xij ∈ B(StabAut(Fr)(U)). If
si = 1 or there is k ∈ {1, . . . , r} with k 6= i, j and sk > 1, this follows from Lemma 6.
If that is not the case, we are in the situation of r− 2 looplets with si > 1, sj > 1 and
sk = 1 for k 6= i, j. Invoking Lemma 6 for Xik and for Xkj, and using [Xik, Xkj] = Xij,
we show Xij ∈ B(StabAut(Fr)(U)). �

53

3 The loop subgroups

3.8 Sharper bounds

To fully understand the situation, we yet have to find out whether the lower bound
S(v) from Theorem 3 is already the full group B(StabAut(Fr)(U)). It turns out that
this is indeed the case.

Information on the upper bound of the image of the stabilizer subgroup can be
obtained in the more general setting of congruence subgroups of level 2:

Theorem 4 Let U ≤ Fr, r ≥ 3, be a subgroup with Γ2 ≤ B(StabAut(Fr)(U)), and let

vi =

{
0, if π(gi) is an even permutation

1, if π(gi) is an odd permutation.

Then,
B(StabAut(Fr)(U)) ≤ S(v).

PROOF Let γ ∈ StabAut(Fr)(U). For a generator gi, i ∈ {1, . . . , r}, the permutation
π(γ(gi)) has the same parity as π(gi), by Lemma 2. Therefore, the number of odd
permutations in the word γ(gi) equals vi modulo 2:

r

∑
j=1

#gj γ(gi) · vj ≡ vi (mod 2)

This condition can be written as v · B(γ) = v, hence B(γ) ∈ S(v). �

This is an interesting result, as the subgroups S(v) are maximal, but far from the
only maximal groups.

Corollary 2 For a loop subgroup U ≤ Fr, r ≥ 3, with at most r− 2 looplets, we have

S(v) = B(StabAut(Fr)(U))

where

vi =

{
0, if si odd

1, if si even.

PROOF Theorem 4 applies because Γ2 ≤ B(StabAut(Fr)(U)) by Lemma 7 and the
permutation π(gi) is odd if and only if si is even. Theorem 3 provides the inclusion
in the other direction. �

54

3.9 The excluded case

3.9 The excluded case

In the previous sections, we have always excluded loop subgroups with exactly
r− 1 looplets. These subgroups have some special properties that make them break
rank and therefore, they are handled separately here.

Let U be a loop subgroup with exactly r− 1 looplets and assume without loss of
generality that s1 6= 1. The subgroup can now be written as

U = {w ∈ Fr | #xw ≡ 0 (mod s1)}.

This fact is easily seen by tracing a word in the coset graph of U: Only occurrences
of x advance on the graph, and x must occur a multiple of si times to end up at the
node U.

Let A : Fr → Zr be the surjective abelianization map defined by w 7→ (#gi w)i=1,...,r.
Then U = A−1(U′) with U′ := {v ∈ Zr | v1 ≡ 0 mod s1} ≤ Zr. This allows us to
calculate B(StabAut(Fr)(U)) using the following, more general observation:

Lemma 12 Let ϕ : G → G′ be a surjective group homomorphism with its kernel char-
acteristic in G. Let H ≤ G and H′ ≤ G′ be subgroups such that H = ϕ−1(H′). Let
ψ : Aut(G)→ Aut(G′) be the map induced by ϕ. Then

ψ(StabAut(G)(H)) = StabAut(G′)(H′) ∩ ψ(Aut(G)).

PROOF For γ ∈ Aut(G), y ∈ G′ the map ψ : Aut(G) → Aut(G′) is defined by
ψ(γ)(y) := ϕ(γ(x)) for an x ∈ ϕ−1(y). This is well-defined because the kernel of ϕ

is characteristic. Thus

ψ(StabAut(G)(H)) = ψ({γ ∈ Aut(G) | γ(H) = H})
= {ψ(γ) | γ ∈ Aut(G), ∀x ∈ H : γ(x) ∈ H}
= {ψ(γ) | γ ∈ Aut(G), ∀x ∈ H : ϕ(γ(x)) ∈ ϕ(H)}
= {ψ(γ) | γ ∈ Aut(G), ∀y ∈ H′ : ϕ(γ(ϕ−1(y))) ∈ ϕ(H)}
= {ψ(γ) | γ ∈ Aut(G), ∀y ∈ H′ : ψ(γ)(y) ∈ H′}
= {γ′ ∈ Aut(G′) | ∀y ∈ H′ : γ′(y) ∈ H′} ∩ ψ(Aut(G))

= StabAut(G′)(H′) ∩ ψ(Aut(G)) �

Proposition 1 For the s1/1/ . . . /1 loop subgroup U, si ∈ N, of Fr we have

Γs1 ≤ B(StabAut(Fr)(U)) = StabGLr(Z)(U
′) ≤ GLr(Z)

where
U′ := {v ∈ Zr | v1 ≡ 0 mod s1}.

55

3 The loop subgroups

PROOF As noted before, U = A−1(U′). B is surjective, because preimages of a
generating set of GLr(Z) are given by τ1 and the automorphisms in the proof of
Lemma 6. Therefore, Lemma 12 gives us

B(StabAut(Fr)(U)) = StabGLr(Z)(U
′).

Since every matrix in Γs1 stabilizes U′, B(StabAut(Fr)(U)) contains Γs1 . �

As a matter of fact, s1 is the level of the congruence subgroup B(StabAut(Fr)(U)).
The difference to the other loop subgroups is evident: While here we easily reach
any congruence subgroup level, in the other cases we do not exceed level 2.

3.10 Index two subgroups of Fr

The property of subgroups of Fr that the image of their stabilizer subgroups under
B̄ is one of the groups

S(v) = {M ∈ GLr(Z/2Z) | v ·M = v}

for v ∈ (Z/2Z)r is not limited to loop subgroups. In this section, we will see
that it holds for subgroups of Fr of index 2 as well. These are in general not loop
subgroups.

Theorem 5 Let U < Fr be a subgroup of index two. We have

B(StabAut(Fr)(U)) = S(v)

where

vi =

{
1, if gi /∈ U

0, if gi ∈ U.

PROOF As shown e.g. in [Fre08], Lemma 3.7, a subgroup U < Fr of index 2 is fully
determined by the generators of the free group that are contained in U, since g2

i ∈ U
for all generators gi. The coset graph of U is:

U Fr \U

gi /∈ U

gi /∈ U

gi ∈ U gi ∈ U

56

3.11 Discussion and further directions

As can be seen from the graph, we actually have g2
i ∈ NT(U). By the argument of

Section 3.2.1, preimages of the generators X2
ij, i 6= j, and Ti of Γ2 in the stabilizer

subgroup of U can be given explicitly by the automorphisms γij : gj 7→ g2
i gj,

gk 7→ gk, k 6= j, and τi. This proves Γ2 ≤ B(StabAut(Fr)(U)) and we can actually
project this group into GLr(Z/2Z) without losing information.

For a word w ∈ Fr, only the number of generators with gi /∈ U in the word decide
whether it is in U, as only those have an effect when tracing the word in the coset
graph. Due to our definition of v, this leads to the equation

w ∈ U ⇐⇒
r

∑
j=1

#gj w · vj ≡ 0 (mod 2)

and thus for all i ∈ {1, . . . , r}
r

∑
j=1

#gj γ(gi) · vj ≡ vi (mod 2).

We first prove B(StabAut(Fr)(U)) ≥ S(v). For a matrix M ∈ S(v), take any preimage
γ ∈ B̄−1(M). For a word w ∈ U we have, using the two previous equations,

r

∑
j=1

#gj γ(w) · vj =
r

∑
j=1

(
r

∑
i=1

#gj γ(gi) · #gi w

)
· vj

=
r

∑
i=1

#gi w ·
(

r

∑
j=1

#gj γ(gi) · vj

)

≡
r

∑
i=1

#gi w · vi (mod 2)

≡ 0 (mod 2),

showing γ(w) ∈ U and thus γ ∈ StabAut(Fr)(U).

The other inclusion, B(StabAut(Fr)(U)) ≤ S(v), follows from Theorem 4 and the fact
that π(gi) is even if and only if gi ∈ U. �

3.11 Discussion and further directions

The study of images of stabilizer subgroups under the map B was motivated
by the analogy to origamis, which are restricted to the rank r = 2. Comparing

57

3 The loop subgroups

these settings, we see that higher ranks cause the objects to become simpler. In
[HL05], Theorem B and Conjecture 1, the size of the orbit of an L(a, b)-origami
with n squares under the action of Out+(F2) ∼= SLr(Z) is calculated for even n
and conjectured for odd n. This number, which is also the index of the Veech
group of the origami, grows without bound as n increases. The F2 subgroups
induced by L-origamis are loop subgroups in our sense, but here we find that,
no matter what the index of the loop subgroup (with not r − 2 looplets) is, the
index of the image of its stabilizer subgroup in GLr(Z) with r > 2, is bounded by
[GLr(Z/2Z) : S(v)] = 2r − 1.

This bound is caused by applying the map B, as the index of the stabilizer subgroups
in Aut(Fr) is still unbounded, as shown in Lemma 3. Thus a lot of information
about these subgroups is lost in the process, making this approach less useful if one
is primarily interested in the situation in Aut(Fr).

While our main result has been reached now, we want to give some thoughts about
possible further directions.

So far, the loops of the loop subgroups were pairwise disjoint, with exception of
the node U itself. This was a crucial part of the argument, as it allowed us, for
a pair of generators gi and gj, to find another generator gk, k 6= i, j, such that the
permutations π(gj) and π(gk) were in the shape required by Lemma 4. But to find
such a generator gk, it is not really necessary that all other loops are disjoint, it is
sufficient to have one such loop. Therefore, one can expect a possible generalization
of Corollary 2 to require just this. Unfortunately, for non-loop-subgroups, it is
not easy to see that we have pre-images of a matrix Ti or any other matrix with
determinant −1.

Example 8 One such group can be obtained by taking the 3/3/1/3 subgroup, and
merging the nodes g1

4U and g2
4U with x1U resp. x2U. The resulting coset graph

is shown in Figure 4. The similarity to Example 6 is obvious. Preimages to the
elementary matrices are found the same way. We also see that T2 has the preimage
τ2, thus the image of the stabilizer subgroup is again the whole linear group.

Example 9 But also the more convoluted case of the subgroup with the coset graph
from Figure 5, which is obtained by merging the cosets of the 3/3/3/3/3 loop
subgroup of F5, has the property that for generators i, j, there is a third generator
k that the permutations π(gj) and π(gk) are in the shape required for Lemma 4.
Therefore, preimages to the elementary matrices exist. The automorphism τ1 is not
a stabilizer, so a preimage to T1 is not easily given. Our results so far tell us that the
image of the stabilizer subgroup contains the full special linear group, but to decide
whether it is the full group, additional arguments are required. Unfortunately, the

58

3.11 Discussion and further directions

U

y1U

y2U

y

y

y

z, x, g4

z, x, g4

x1U

x2U

x, g4

x, g4

x, g4

z, y

z, y

z

Figure 4: A subgroup obtained from a 3/3/1/3 loop subgroup by merging nodes.

U

g1
1U

g1
2Ug1

3U

g1
4U

g1
5U

y, z, g4

z, g4, g5x, g4, g5

x, y, g5

x, y, z

g5

g5

g5

g4

g4

g4

z

z

z

y

y y x

x

x

Figure 5: A supergroup of the 3/3/3/3/3 loop subgroup.

59

3 The loop subgroups

code described in Chapter 2 was not able to calculate the stabilizer subgroup in
reasonable time.

Table 9 gives, for a given rank of the the free group and a given maximum index
the number of conjugacy classes of subgroups, the number of loop subgroups
where Corollary 2 is applicable and the number of subgroups where for each pair
of generators there is a third generator with permutations as required for Lemma 4.
It is calculated using [GAP08] using the script printed on page 63.

Our proofs are based on the fact that we have the whole alternating group AN

as commutators of 〈π(gj), π(gk)〉, and that the permutations π(gj) in the odd
case, π(g2

j) in the level calculation resp. π(gjgl) in the even case are all even
permutations. But the essence of the argument is that these permutations lie in
[〈π(gj), π(gk)〉, 〈π(gj), π(gk)〉], even if that is might not be the whole group AN .
Using this argument might lead to an even larger class of subgroups where the
argument above runs through. Furthermore, we are not limited to two generators
to build the commutators from, we just must not use gi in it, possibly allowing for
further generalization.

If a subgroup U ≤ Fr is not in a shape accessible by these methods, one can try to
obtain a suitable shape by using another basis of Fr. This is equivalent to turning to
another subgroup γ(U) in the orbit of U under the action of Aut(Fr). All subgroups
in the same orbit have the same stabilizer subgroup (up to conjugation).

It might therefore be fruitful to study to which larger class of subgroups of Fr we
can generalize our argument.

60

3.11 Discussion and further directions

ra
nk

m
ax

. i
nd

ex

co
nj

uga
cy

cla
ss

es
co

nj
uga

cy
cla

ss
es

w
ith

lo
op

su
bg

ro
ups

co
nj

uga
cy

cla
ss

es
su

ita
bl

e fo
r Lem

m
a 4

3 1 1 1 1
2 8 1 1
3 49 4 2
4 653 11 9
5 14406 23 33
6 518659 41 95

4 1 1 1 1
2 16 1 1
3 251 7 14
4 14371 23 197
5 1727216 54 1866

5 1 1 1 1
2 32 1 1
3 1393 11 91
4 335969 41 3651

6 1 1 1 1
2 64 1 1
3 8051 16 481

Table 9: Conjugacy classes containing loop subgroups

61

Counting loop subgroups

The following GAP script is used to calculate Table 9 on page 61:

Convenience function
everySecond := function (list)

return list{[2, 4 .. Length(list)]};
end;

Detecting a permutation with a single cycle
isCycle := function (perm)

local struct;
struct := CycleStructurePerm(perm);
return Length(struct) = 0 or

(Number(struct) = 1 and struct[Length(struct)] = 1);
end;

These cases are calculateable in bearable time
cases := [

[3,1],[3,2],[3,3],[3,4],[3,5],[3,6],
[4,1],[4,2],[4,3],[4,4],[4,5],
[5,1],[5,2],[5,3],[5,4],
[6,1],[6,2],[6,3],

];

for case in cases do
rank := case[1];
index := case[2];
F := FreeGroup(rank);
countSG := 0;
countLoopSG := 0;
countGeneralLoopSG := 0;
for sg in LowIndexSubgroupsFpGroupIterator(F,index) do

countSG := countSG + 1;

63

3 The loop subgroups

The list of permutations
perms := List(everySecond(CosetTable(F,sg)), PermList);

We want all permutations to be cycles
if not ForAll(perms, isCycle) then; continue; fi;

properLoops := Filtered(perms, p −> p <> ());
if properLoops = [] # The trivial subgroup
then

countLoopSG := countLoopSG + 1;
countGeneralLoopSG := countGeneralLoopSG + 1;
continue;

fi;
For the loop subgroup, there is one coset moved by all proper loops
pointsMovedByAll := Intersection(List(properLoops, MovedPoints));
if Length(pointsMovedByAll) = 1
then

Detect a loop subgroup. Every other point must be moved at most once
identity := pointsMovedByAll[1];
if ForAll([1..index], i −>

i = identity or Number(properLoops, p −> iˆp <> i) <= 1
) then

countLoopSG := countLoopSG + 1;
fi;

fi;
Detect a general loop subgroup. Every proper loop needs two other proper
loops to be almost disjunct from
if ForAll([1..Length(properLoops)], i −>

1 < Number([1..Length(properLoops)], j −>
i<>j and
Length(IntersectionSet(

MovedPoints(properLoops[i]),
MovedPoints(properLoops[j])

)) = 1
)

) then
countGeneralLoopSG := countGeneralLoopSG + 1;

fi;
od;

Print(”Rank: ”, rank, ”, Index: ”, index,”\n”);
Print(”Subgroups: ”, countSG, ”\n”);
Print(”Loop Subgroups: ”, countLoopSG, ”\n”);
Print(”General Loop Subgroups: ”, countGeneralLoopSG,”\n”);

od;
QUIT;

64

Bibliography

[AFV08] Heather Armstrong, Bradley Forrest, and Karen Vogtmann, A presentation
for Aut(Fn), Journal of Group Theory 11 (2008), no. 2, 267–276.

[BBN59] Gilbert Baumslag, W. W. Boone, and B. H. Neumann, Some unsolvable
problems about elements and subgroups of groups., Mathematica Scandinavica
7 (1959), 191–201.

[Bos06] Siegfried Bosch, Algebra, Springer-Verlag, Berlin, 2006, 6th Edition.

[Cox36] H. S. M. Coxeter, An Abstract Definition for the Alternating Group in Terms
of Two Generators, J. London Math. Soc. s1-11 (1936), no. 2, 150–156.

[EM09] Jordan S. Ellenberg and D. B. McReynolds, Every curve is a Teichmüller
curve, preprint at arXiv:0909.1851 [math.GT], 2009.

[Fre08] Myriam Freidinger, Stabilisatorgruppen in Aut(Fz) und Veechgruppen von
Überlagerungen, Diplomarbeit, Universität Karlsruhe (TH), 2008.

[GAP08] The GAP Group, GAP – Groups, Algorithms, and Programming, Version
4.4.12, 2008.

[HL05] Pascal Hubert and Samuel Lelièvre, Noncongruence subgroups in H(2),
International Mathematics Research Notices 2005:1 (2005), 47–64.

[Lee63] John Leech, Coset enumeration on digital computers, Mathematical Proceed-
ings of the Cambridge Philosophical Society 59 (1963), no. 02, 257–267.

[Men64] Nathan Saul Mendelsohn, An algorithmic solution for a word problem in
group theory, Canadian Journal of Mathematics 16 (1964), 509–516.

[Sch05] Gabriela Schmithüsen, Veech groups of origamis, Ph.D. thesis, Universität
Karlsruhe (TH), 2005.

65

Bibliography

[Ser97] Ákos Seress, An introduction to computational group theory, Notices Amer.
Math. Soc 44 (1997), 671–679.

[Sim94] Charles C. Sims, Computation with finitely presented groups, Encyclopedia
of mathematics and its applications, vol. 48, Cambridge University Press,
New York, 1994.

[Sur03] B. Sury, The congruence subgroup problem, Hindustan Book Agency, New
Delhi, 2003.

[TC36] J. A. Todd and H. S. M. Coxeter, A practical method for enumerating cosets of
a finite abstract group, Proceedings of the Edinburgh Mathematical Society
(Series 2) 5 (1936), no. 01, 26–34.

66

Erklärung

HIERMIT erkläre ich, Joachim Breitner, dass ich die vorliegende Diplomarbeit
selbständig und ausschließlich unter Verwendung der angegebenen Quellen

und Hilfsmittel verfasst habe.

Ort, Datum Unterschrift

67

	Fundamentals
	The automorphism group
	The free group
	The coset graph
	Pseudocode notation

	The CosetProject algorithm
	First approach: Todd-Coxeter
	Description of the algorithm
	An example application of the Todd-Coxeter algorithm
	Analysis of the algorithm

	Second approach: CosetProject
	Proof of termination
	Proof of correctness

	Run time analysis
	Improved data structures

	Preimage calculation
	Application to the automorphism group
	Index two subgroup intersection
	The map B in terms of generators
	Subgroup intersection and coset graphs
	Generator rewriting

	Congruence level
	Results

	The loop subgroups
	Definition of loop subgroups
	Preparations
	Permutations of cosets
	The linear group and the principal congruence subgroup

	The odd case
	The level
	Stabilizer subgroups in GL_r(Z/2Z)
	Generators
	Maximality

	The even case
	The mixed case
	Sharper bounds
	The excluded case
	Index two subgroups of F_r
	Discussion and further directions

