
Church’s undecidability result
Alan Turing Birth Centennial Talk at IIT Bombay, Mumbai

Joachim Breitner

April 21, 2011

Welcome, and thank you for the invitation to speak about Church’s lambda calculus and
how he first showed that Hilbert’s decision problem is not solvable. I will first try to give
an idea of the time in which this result was published and then have a closer look at the
calculus and the proof. Generally, I am happy to take questions during the talk, and I am
even happier if the audience helps in answering them.

1 The early 20th century

The early 20th century must have been a very exciting time for mathematicians, although
less so for computer scientists. The need for a formal language for mathematical statements
and proofs had been recognized, but finding good formalisms has been hard. Already in the
19th century, George Boole had formalized propositional logic. Gottlob Frege had started a
serious attempt to formalize predicate logic in a book called Begriffsschrift, using a strange
two-dimensional syntax. Twenty years later, the 20th century has now just begun, Bertrand
Russell pointed out in a letter to Frege what is now famous as Russell’s paradox: We can
define a set R as

s ∈ R ⇐⇒ s /∈ s

and then substitute R for s to find

R ∈ R ⇐⇒ R /∈ R

which is obviously quite a problem. Russell showed that the system of the Begriffsschrift is
not consistent.

A later, enormous attempt to create a proper formal basis for mathematics was Russell
and Alfred Whiteheads’ principia mathematica. They now were aware of the problem of
self-contradiction and tried hard to avoid these, using type theory: Individuals, sets of
individuals, sets of sets of individuals were kept separate. I will refrain from telling after

1



how many pages of work the statement 1+1=2 was formalized – all in all it was a tedious,
but worthwhile and well-respected approach.

Now David Hilbert enters the stage, and for some reason he always appears only posing
questions, never giving answers. So I conclude that if you want to become one of the greatest
mathematician of all times, do not waste your time with answers. . . Anyways, Hilbert’s
program asked for a formal system for all of mathematics, in which all true statements can
be proven, no contradiction can occur and a decision method is available which tells us for
any statement whether it is true or false.

That is a lot of wishes, and unfortunately, the world is not a nice enough place for these wishes
to become true. The first setback was due to Kurt Gödel in 1931. His first incompleteness
theorem states that any consistent logic strong enough to talk about arithmetic has formulas
who are true, but cannot be proven true within the system. Shortly put: You cannot have
consistence and completeness.

That was, understandably, quite a disappointment for Hilbert and the rest of mathematics.
So what about Hilbert’s last wish: Can we at least have a decision procedure, that is a
mechanical method or algorithm, which can decide if a statement is provable? This question
is called the Entscheidungsproblem and, poor Hilbert, that as well is not possible. This
result was obtained by Alonzo Church in 1935 using his lambda calculus, by a nice argument
by contradiction.

Turing, who at that time was working with Turing machines, although he certainly did not
call them this way, published his result about the halting problem, which also implied the
unsolvability of the Entscheidungsproblem, just months after Church. The fact that it is
more famous now is probably due to computer science students having more exposure to
Turing machines than to the lambda calculus.

Both these results, Church’s and Turing’s, have one problem: They are based on an unproven
conjecture! Hilbert asked for a mechanical method of deciding the provability of a formula,
something that was called to be effectively calculable. The idea he had in mind was, of
course, an educated mathematician strictly following some clear rules. But – luckily –
mathematicians, and humans in general, have not been formalized yet, so Church and Turing
could not directly talk about such a hypothetical decision method. Instead they presented
a model of computation – lambda calculus or Turing machines – and argued that anything
effectively calculable could be implemented in these. To stress this, Church showed that
lambda calculus is as expressive as general recursive functions, something defined by Gödel
and currently discussed at that time, and he pleads: “If this interpretation or some similar
one is not allowed, it is difficult to see how the notion of an algorithm can be given any
exact meaning at all.” But whether this really covers all that is effectively computable was
doubted by some, including Gödel. Turing showed the equivalence of Turing machines and
lambda calculus, and his arguing – but not proving – why Turing machines are a good model
for effectively calculability at least convinced Gödel and so people started referring to it as
the Church-Turing thesis – but naturally, it is not a real thesis, as it is not (and cannot) be
proven.

2



2 Lambda calculus

Having set the stage let us now have a closer look at the lambda calculus. Lambda calculus
talks about lambda terms, which are very simple: Given a set of variables V , a lambda
calculus term is either a variable, an application of a lambda term to another or a lambda
abstraction of an term with a free occurrence of the abstracted variable. Free means that
the variable occurs in the term at a point where it is not bound by a lambda abstraction.
Formally, the syntax is given by these rules, although we apply common sense when it comes
to avoiding parenthesis and variable renaming.

v ∈ V =⇒ v ∈ Λ

M,N ∈ Λ =⇒ MN ∈ Λ

M ∈ Λ, x ∈ V, x free in M =⇒ λx.M ∈ Λ

Here are some examples for lambda terms, with some arbitrary names:

I = (λx.x)

ω = (λx.xx)

C3 = (λfx.f(f(fx)))

What can we do with these terms? Not much, really, there is only one rule, called β-
reduction, that we can apply to a term or any of its subterms:

(λx.M)N −→M [x := N ]

This rule replaces an application of a lambda abstraction by the abstracted term, with the
abstracted variable replaced by the second term of the application. If we can apply this
rules repeatedly to the term M and end up having the term N , then we say that M can be
reduced to N and writeM −→∗ N . IfM and N can both be reduced to some common term,
we say M and N are convertible into each other and write M ∼ N , which is an equivalence
relation. I admit that I cheated with this definition, the original definition is more general,
but then shown to be equivalent to this one.

Also important is the notion of a normal form: A lambda term N is in normal form if the
β-reduction rule cannot be applied to it any more. A lambda term M has a normal form N
if it can be reduced to it. Here is one example. We start with C3Iz and find that it has the
normal form z.

C3Iz = (λfx.f(f(fx)))(λx.x)z −→ (λx.x)((λx.x)((λx.x)z))

−→ (λx.x)((λx.x)z)

−→ (λx.x)z −→ z

Do all lambda terms have normal forms? Unfortunately not. Let us consider ω applied to
itself:

ωω = (λx.xx)(λx.xx) −→ (λx.xx)(λx.xx) −→ · · ·
No matter how often we apply the β reduction rule, we never obtain a term where we cannot
apply it once more.

3



3 Numerical functions

As mentioned before, Church showed that the lambda calculus is as expressive as the theory
of recursive numerical functions, where numerical function denotes a function from the nat-
ural numbers to the natural numbers. How can we express these in lambda calculus? To do
so, we first have to define the natural numbers. You have already seen one, the three, and
here is the general definition:

Ci = (λfx. f(f(· · · (f︸ ︷︷ ︸
i times

x))), i ∈ N.

If you, for a moment, interpret the variable f to represent a function and x a value, then the
lambda term representing the number 42 applies the function 42 times to the value. Note
that all these numbers are normal forms.

Next we can define what it means that a lambda term represents a numerical function. We
say that the lambda expression F represents the function f if the application of F to an
encoded natural number reduces to the appropriate natural number representing the image
under f :

∀i, j ∈ N : f(i) = j ⇐⇒ FCi −→∗ Cj

Now we can let lambda terms work with numbers. For our purposes, we also need to represent
arbitrary lambda terms as numbers. We do so by a Gödel encoding, which I will denote by
G. The details are not interesting; we can use, for example, prime powers, where the power
of the ith prime gives the symbol at the iths position, with certain powers associated with
certain symbols:

G[(λx.xx)] = 211 · 31 · 517 · 717 · 1117 · 1313

This mapping is reversible and both directions are, as Hilbert might have put it, effectively
calculable.

n 7→ n ∈ G[Λ]?

n 7→ G[Cn]

n 7→ G[N ], where G−1[n] −→ N

n 7→ G−1[n] Y−→?

n 7→ ∃N ∈ Λ. G−1[n] −→∗ N Y−→?

Now we are able to create numerical functions that
work on the Gödel encoding of lambda terms. For
example, there is a function that takes a natural
number and detects whether it is the Gödel encod-
ing of a valid lambda term. Or a function that con-
verts between natural numbers and Gödel encodings
of lambda terms representing natural numbers (con-
fusing, isn’t it?). Or a function that can perform
lambda reduction on a Gödel encoded lambda term. Or a function that checks whether
a Gödel encoded lambda term is in normal form. Or a function that detects whether a
Gödel encoded lambda term has a normal form. . .

4



4 The unsolvable problem

Or is there? We have finally hit the crux of the whole thing – that function does not exist!
This is why Church’s paper has the title “An unsolvable problem of number theory”. Let me
try to sketch the proof before we see the connection to the Entscheidungsproblem.

Assume we have such a function. Then we certainly have a function that can check whether
a given lambda term has one of the encoded numbers as a normal form, and which one.
There is an enumeration A of all lambda terms which have a normal form – this is shown
earlier in the paper. Then we can define a function e as follows:

e(n) =

{
i+ 1, if AnCn −→∗ Ci for an i ∈ N
1, otherwise

Per our assumption e is effectively calculable, hence there is a lambda term E representing
it. E has a normal form, which follows from a lemma that we skipped. Hence E is in the
enumeration A, say E = An. Then we find that ECn reduces to some number i, hence, by
the definition of e, it reduces to i+ 1. That is the contradiction we were aiming for.

ECn −→∗ Ci =⇒ AnCn −→∗ Ci =⇒ e(n) = i+ 1 =⇒ AnCn −→∗ Ci+1.

5 Towards the Entscheidungsproblem

Now that we have established that an effective method of deciding whether a lambda term has
a normal form or not cannot exist, we can use this to show that the Entscheidungsproblem
is not solvable.

So let us take any consistent logic strong enough to talk about natural numbers and recursive
functions and other stuff we usually expect from a useful logic, for example the one in
principia mathematica. In that logic, we can certainly give a formula which tells whether a
Gödel encoded lambda term is in normal form, and also a formula which represents the β
reduction relation. The transitive closure would also be formulateable, hence we would be
able to express the predicate that a lambda term has a normal form:

|= ϕ(m) ⇐⇒ ∃N ∈ Λ. G−1[m] −→∗ N Y−→

If a lambda termM has a normal form, then ϕ(G[M ]) is provable in the logic, the proof could
be given by the list of intermediate lambda terms and the final normal form. Conversely,
if a lambda term does not have a normal form, then ϕ(G[M ]) is not provable, because the
logic is consistent.

5



Assume now the Entscheidungsproblem were solvable, so we have an effective method to
decide whether ϕ(G[M ]) is provable or not. Then we would have an effective method to
decide whether M has a normal form or not. And that, as we have seen before, is not
possible.

This implies that there is no hope of replacing mathematicians by computers and with this
delectable result, I conclude my talk.

Timeline

For a visualization of the order of events, a time line has been prepared. The dates used
are: Boole 1815-1864, calculus 1847. Frege 1848-1925, Begriffsschrift 1879. Hilbert 1862-
1943, Hilbert’s program 1918-1922. Russell 1872-1970, paradox 1902, principia mathematica
1910-1913. Church 1903-1995, publication 1935. Gödel 1906-1978, incompleteness theorem
1931, Turing 1912-1954, publication 1936.

1800 1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960

H
ilb

er
t’
s
pr
og

ra
m

pr
in
ci
pi
a
m
at
he
m
at
ic
a

C
hu

rc
h’
s
pa

pe
r

Tu
ri
ng

’s
pa

pe
r

in
co
m
pl
et
en
es
s
pa

pe
r

B
oo

le
’s

ca
lc
ul
us

B
eg
ri
ffs
sc
hr
ift

R
us
se
ll’
s
pa

ra
do

x

David Hilbert

Alonzo Church

Kurt Gödel

Alan Turing
George Boole

Gottlob Frege

Bertrand Russell

Sources

• Alonzo Church: “An unsolvable Problem of Elementary Number Theory”, American
Journal of Mathematics, Vol. 58, No. 2 (April 1936), 345-363

• Yuri Gurevich: “The Church-Turing Thesis: Story and Recent Progress”, Google
Techtalk, June 8, 2009

• Wikipedia of course, what do you think?

6


	The early 20th century
	Lambda calculus
	Numerical functions
	The unsolvable problem
	Towards the Entscheidungsproblem

