
OCC
Programming

Joachim
Breitner

Prelude

Preview

Functions

def

Parameters

return

Dictionaries

{ . . .}

Obroni Computer Club – Functions in Python

Joachim Breitner

SOS Hermann Gmeiner International College

October 3,th 2006

OCC
Programming

Joachim
Breitner

Prelude

Preview

Functions

def

Parameters

return

Dictionaries

{ . . .}

Today’s topics

1 Prelude
Our next steps

2 Functions in Python
Defining functions
Function parameters
Return values

3 Dictionaries in Python
Creating dictionaries

OCC
Programming

Joachim
Breitner

Prelude

Preview

Functions

def

Parameters

return

Dictionaries

{ . . .}

Prelude

1 Prelude
Our next steps

2 Functions in Python
Defining functions
Function parameters
Return values

3 Dictionaries in Python
Creating dictionaries

OCC
Programming

Joachim
Breitner

Prelude

Preview

Functions

def

Parameters

return

Dictionaries

{ . . .}

What can we expect now?

We finally can write interesting programs. Where do we want
to go from here?

Maybe already next school week, we have a look at how to
make our python programs network aware. This means, that
you can run your little text-based games as servers, and
everyone can connect to them, even from windows.

A bit later, if you want, we can see how we use our programs
to serve to web browsers, creating programs that everyon can
use from any computer, and that are not text based any more.

Today, we’ll have a look at a construct that makes complex
programs easier to write and maintain: Functions.

OCC
Programming

Joachim
Breitner

Prelude

Preview

Functions

def

Parameters

return

Dictionaries

{ . . .}

What can we expect now?

We finally can write interesting programs. Where do we want
to go from here?

Maybe already next school week, we have a look at how to
make our python programs network aware. This means, that
you can run your little text-based games as servers, and
everyone can connect to them, even from windows.

A bit later, if you want, we can see how we use our programs
to serve to web browsers, creating programs that everyon can
use from any computer, and that are not text based any more.

Today, we’ll have a look at a construct that makes complex
programs easier to write and maintain: Functions.

OCC
Programming

Joachim
Breitner

Prelude

Preview

Functions

def

Parameters

return

Dictionaries

{ . . .}

Functions in Python

1 Prelude
Our next steps

2 Functions in Python
Defining functions
Function parameters
Return values

3 Dictionaries in Python
Creating dictionaries

OCC
Programming

Joachim
Breitner

Prelude

Preview

Functions

def

Parameters

return

Dictionaries

{ . . .}

Over and over again. . .

Often, a certain piece of code has to be used in more than one
place in your program, or you just want to order your code in a
more concise manner. For that, you might want to use
functions.

def-statement

1 def my function() :
2 code

After you have defined a function like this, you can use it
anywhere in your program, by writing my function()
The name of the function (here “my function”) is a python
identifier, so the same rules apply as for variables. You can’t
have a variable and a function of the same name.

OCC
Programming

Joachim
Breitner

Prelude

Preview

Functions

def

Parameters

return

Dictionaries

{ . . .}

Example: Noisy hostels

Assuming, we have a maze-like game with hostels. Some
hostels are very noisy, so when you enter them, we print some
noise.

Consider the following function:

1 def noise () :
2 print ”Swooooooooooooosh”
3 print ”Bang!”
4 print ”Crash.”
5 print ”Beeeeeeeeeeeeeeeeeeeeeeeeep”

OCC
Programming

Joachim
Breitner

Prelude

Preview

Functions

def

Parameters

return

Dictionaries

{ . . .}

Example: Noisy hostels

Assuming, we have a maze-like game with hostels. Some
hostels are very noisy, so when you enter them, we print some
noise.
Consider the following function:

1 def noise () :
2 print ”Swooooooooooooosh”
3 print ”Bang!”
4 print ”Crash.”
5 print ”Beeeeeeeeeeeeeeeeeeeeeeeeep”

OCC
Programming

Joachim
Breitner

Prelude

Preview

Functions

def

Parameters

return

Dictionaries

{ . . .}

Example: Noisy hostels (ctnd.)

And this code fragment:

1 if current hostel == ”Nile”:
2 noise ()
3 elif current hostel == ”Niger”:
4 noise ()
5 elif current hostel == ”Volta”:
6 noise ()
7 noise ()

See how that saves you a lot of work? Also, if you want to add
more noises, or change some, you only have to do it at one
place. The code is also easier to read.

OCC
Programming

Joachim
Breitner

Prelude

Preview

Functions

def

Parameters

return

Dictionaries

{ . . .}

Some variations. . .

Functions would be boring if they would be doing the same
thing every time. Luckily, we can pass information to the
function, using parameters.

Assume we want to have a function that prints everything
twice:

1 def print2 (text) : # text is a parameter
2 print text
3 print text

Now we can use this function with all kind of texts:

1 print2 (”Hello!”)
2 name = raw input(”What is your name? ”)
3 print2 (”Nice to meet you, ”+name)

OCC
Programming

Joachim
Breitner

Prelude

Preview

Functions

def

Parameters

return

Dictionaries

{ . . .}

Some more variations. . .

You can have more than one parameter, just separate them
with commas:

1 def my print(important, text) :
2 if important:
3 print ”IMORTANT! ”+text+” IMPORTANT!”
4 else :
5 print text
6
7 # later in the code, e.g. a nuclear plant controller
8 my print(heat > 1000, ”Core: ”+str(heat)+” degrees”)
9 # or a email client

10 my print(sender == ’Mom’, ’You got a new e−mail!’)

OCC
Programming

Joachim
Breitner

Prelude

Preview

Functions

def

Parameters

return

Dictionaries

{ . . .}

Exercise: Custom print function

Write a nice print function, for example one that puts
something like ’ −−> ’ before each line, or puts lines like
’ ... ’ before and after it. Be creative!

Take one of your old programs (e.g. the hello world program,
or the Fahrenheit conversion program), and make it use your
new function.

OCC
Programming

Joachim
Breitner

Prelude

Preview

Functions

def

Parameters

return

Dictionaries

{ . . .}

Getting something back for what you give

You might have noticed that I have called int (), str () and
raw input() functions before. Because that is what they are.
What makes them different is that you can use them as
values. In other words: these functions return someting.

The return-statement

1 def some function(param1, param2):
2 some code
3 return value

Where value can be anything (a string, a number, a
calculation, a variable. . .). The return statement does not
have to be at the end, it can be anywhere, and when the
program comes to such a statement, the function ends and the
code goes on where the function is called.

OCC
Programming

Joachim
Breitner

Prelude

Preview

Functions

def

Parameters

return

Dictionaries

{ . . .}

Example: string repeater

Here we have a function that takes a number and a string and
returns the string repeated that often.

1 def repeater (number, string) :
2 result = ’’ # an empty string
3 while (number > 0):
4 result = result + string
5 number = number − 1
6 return result

The statement

1 print repeater (3, ’ hi ’)

will now output “hihihi”.

OCC
Programming

Joachim
Breitner

Prelude

Preview

Functions

def

Parameters

return

Dictionaries

{ . . .}

Example: better string repeater

The code has a problem: Negative numbers don’t work well.
Also, there is a nicer way to write a = a + b.

1 def repeater (number, string) :
2 if (number < 0):
3 raise ’Negative input to repeater ! ’
4 result = ’’ # an empty string
5 while (number > 0):
6 result += string
7 number −= 1
8 return result

raise causes a program error message with the given string,
and can be used to abort a program in case of an
programming error.

OCC
Programming

Joachim
Breitner

Prelude

Preview

Functions

def

Parameters

return

Dictionaries

{ . . .}

Exercise: Fahrenheit again. . .

We want to write a second version of the Fahrenheit program
that uses functions. Here is the main part of the program, and
you should now write the functions to complete this:

1 #!/usr/bin/python
2 what = ask what()
3 inp = ask degree()
4 if user wants fahrenheit (what):
5 out = f2c(inp)
6 else :
7 out = c2f(inp)
8 give answer(out)

Hint: There are 6 functions to write, some with parameters,
some without, some with return values, some without. If you
need help with the program itself, you can find the old version
in K:\Others\OCC\OCC-5.pdf.

OCC
Programming

Joachim
Breitner

Prelude

Preview

Functions

def

Parameters

return

Dictionaries

{ . . .}

Dictionaries in Python

1 Prelude
Our next steps

2 Functions in Python
Defining functions
Function parameters
Return values

3 Dictionaries in Python
Creating dictionaries

OCC
Programming

Joachim
Breitner

Prelude

Preview

Functions

def

Parameters

return

Dictionaries

{ . . .}

lists considered unfortunate

You might remember how we had a list of lists for the
connected rooms in our maze last time.

1 rooms = [’a’ , ’b’ , ’c’ , ’d’]
2 connected = [
3 [’b’ , ’d’],
4 [’c’ , ’a’],
5 [’d’ , ’b’],
6 [’a’ , ’c’],
7]
8 # later
9 room number = rooms.index(position)

10 ways = connected[room number]

This is not nice. We have to “manually” match the rooms to
the entries in the connected list, and the code to get the list is
ugly.

OCC
Programming

Joachim
Breitner

Prelude

Preview

Functions

def

Parameters

return

Dictionaries

{ . . .}

Better lists

The problem is that lists always are accessed using numbers.
Dictionaries, though, are a bit like lists, but you can use
strings to address the values. Then, the code looks like:

1 rooms = [’a’ , ’b’ , ’c’ , ’d’]
2 connected = {
3 ’a’ : [’b’ , ’d’],
4 ’b’ : [’c’ , ’a’],
5 ’c’ : [’d’ , ’b’],
6 ’d’ : [’a’ , ’c’],
7 }
8 # later
9 ways = connected[position]

Much nicer, isn’t it? Now the order in “connected” does not
matter (we are using names), and we can get the right list
immediately.

OCC
Programming

Joachim
Breitner

Prelude

Preview

Functions

def

Parameters

return

Dictionaries

{ . . .}

More fun with dictionaries

1 # Createing a dictionary
2 rating = { ’Hip Hop’: 1, ’Rock’ : 9}
3 # Reading a value
4 print ’ I rate Hip Hop at: ’ + str(rating [’Hip Hop’])
5 # Writing a value
6 rating [’Rock’] = 10
7 # Adding a value
8 rating [’ Classic ’] = 3
9 # Checking if we have a rating

10 if ’RNB’ in rating :
11 print ’We have rated RNB’

OCC
Programming

Joachim
Breitner

Prelude

Preview

Functions

def

Parameters

return

Dictionaries

{ . . .}

Removing a key?

Can you also remove a key? Sure you can! Find out yourself,
using the

Python Library Reference
http://python.org/doc/2.3/lib/ Bookmark this!

There you can find all kinds of things you can do with python,
to explore yourself, including file access, networking, colors on
the terminal etc., for your own experiments.

You can delete a key using “del rating [’Hip Hop’]”, as described on

http://python.org/doc/2.3/lib/typesmapping.html

http://python.org/doc/2.3/lib/
http://python.org/doc/2.3/lib/typesmapping.html

OCC
Programming

Joachim
Breitner

Prelude

Preview

Functions

def

Parameters

return

Dictionaries

{ . . .}

Removing a key?

Can you also remove a key? Sure you can! Find out yourself,
using the

Python Library Reference
http://python.org/doc/2.3/lib/ Bookmark this!

There you can find all kinds of things you can do with python,
to explore yourself, including file access, networking, colors on
the terminal etc., for your own experiments.

You can delete a key using “del rating [’Hip Hop’]”, as described on

http://python.org/doc/2.3/lib/typesmapping.html

http://python.org/doc/2.3/lib/
http://python.org/doc/2.3/lib/typesmapping.html

OCC
Programming

Joachim
Breitner

Prelude

Preview

Functions

def

Parameters

return

Dictionaries

{ . . .}

Any Questions?

If we have time left, feel free to “program around a little
bit”, so soon you can show off your work that all the others

who have no idea how how to do such things.

Please do remove the OCC posters from the notice boards,
thanks!

	Prelude
	Our next steps

	Functions in Python
	Defining functions
	Function parameters
	Return values

	Dictionaries in Python
	Creating dictionaries

	

