
Obroni Computer Club – More Infon

Joachim Breitner

December 5,th 2006

Welcome to our last session. Next week is the last week of the semester, and
no club sessions will be held.

Last session, we started playing with “infon”, and created bots that run
around and eat. This time, we want to push it further and explore more of
the things you can do with infon, such as converting your bug to a stronger bug,
spawning new bugs and attacking other bugs.

Don’t miss the last section with some final words.

1 Remember?

I recommend you also open last sessoin’s document, for reference. Here is a quick summery
on how to get started:

A game of infon is running our server, occ.soshgic.edu.gh. To view what’s going on,
you can run the graphical client in K:\Others\OCC\infon by double-clicking on the batch
file. You will see the world, maybe already a few bugs. You can grab the world with the
mouse, and change the resolution with the keys 1 through 5.

To take part in the action and control the bug, you can connect to the server using telnet.
Run K:\Others\OCC\putty.exe and connect to occ, using protocol “telnet” and port 1234.
To join the game, enter “j”. You can then change your name with the “n” command.

If you have written your bugs code, upload that to the server, by running the “b” command
in your putty session, and then pasting the code into the window (select it in the editor,
copy, rightclick into the putty window). To finish the program entry, enter a single dot on
one line. You should be back at the prompt.

2 More kinds of bugs

Currently, the infon worlds knows three kind of bugs:

2.1 Small Bug (type 0)

This is the bug you start with. It has medium speed (at least when healthy). It can only
attack the flying bug, and it can convert to either the small bug or the flying bug.

1



2.2 Large Bug (type 1)

If you upgrade a small bug to type 1, it becomes the large bug. It is slower, but more robust
and can attack any other kind of bug. It is the only bug that can spawn new bugs, and it
can only convert back to the small bug.

2.3 Flying Bug (type 2)

If you upgrade a small bug to type 2, it becomes the flying bug. It is the fastest, can fly
over walls and water, but is weak when attackt and can not attack. It can only convert
back to the small bug.

3 Converting

Converting costs food and energy, so you only want to convert healthy bugs. The code
fragment could look like this:

if not (self:type() == 1) and self:food() > 0.6 * self:max_food()
and self:health() > 60 then

self:set_screen_messsage(’morph’)
self:convert(1)

end

You can find out your current type using the self:type() function. If you want to
have the possibility to abort the conversion, for example because you are being attacked,
you might want to use the non-blocking functions self:set_conversion(type), self:↵

begin_converting() and is_converting()

4 Spawning

It would be boring to have only two bugs all the time. Luckily, we can spawn new bugs if
we have a healthy bug. A sample code might be:

if self:type() == 1 and self:food() > 0.8 * self:max_food()
and self:health() > 80 then

self:screen_message(’daddy’)
self:begin_spawning()
while self:is_spawning() do

self:wait_for_next_round()
end

end

5 Attacking

Once you have a large bug, you can find and attack other bugs. The idea is to use the
function self:nearest_enemy() to locate the enemy, then try to catch it and start to

2



attack it. I won’t give you any example code, but the functions are documented in the
reference, so nothing should stop you from raging war against the other bugs!

6 Infon Reference

From here on, you can explore the program by yourself. Here is a reference of some of the
functions you might want to use. For more information, read http://infon.dividuum.de/

I will only cover eating and movement. If you want to find out more about attacking and
evolving, read the website. We might cover it next week.

6.1 Blocking actions

These actions are called “blocking” beacause once you start it, the bug will happily keep
doing it until it is done, and (almost) nothing will stop it.

self:moveto(x,y) will start moving the bug to the specified coordinate, and not return
until we are there. If that is not possible, for example, because we would walk onto a wall,
the function will immediatelly return, returning the value “false”.

self:heal() will start healing the bug. That means that the health bar is increasing, but
the food bar is decreasing. It will run until it can’t heal any more (either fully recovered or
out of food).

self:eat() will eat all the food on the current tile, and won’t return until it is all eaten
or the bug can’t eat any more.

self:convert(type) will convert to the given type. Make sure you have plenty of food
and health before trying that, as otherwise the conversion will fail and you will lose the
invested food!

self:attack(enemy) will attack the given target (which is a player id returned by self↵

:nearest_enemy()) as long as it can. It stops either when the bugs is dead or walked
away.

6.2 Non-blocking actions

You can also program your bug non-blocking, which is a bit harder, but more powerful.
Non-blocking means that you tell the bug what to do next, but it won’t be doing it until
you call self:wait_for_next_round(). This allows you to change your mind while doing
something, for example, starting to eat while going somewhere else.

For every possible action there is a “begin”-function that sets your bug to do something,
and an “is”-function to check if he is (still) doing this thing. They are:

• self:begin_idling() and self:is_idle()

• self:begin_walk_path() and self:is_waling()

3

http://infon.dividuum.de/


• self:begin_healing() and self:is_healing()

• self:begin_eating() and self:is_eating()

• self:begin_converting() and self:is_converting()

• self:begin_attacking() and self:is_attacking()

• self:begin_feeding() and self:is_feeding()

Feeding means giving food to a another bug of you, which of course must be close to
yours. Both attacking and freeding require that you set the target of the action first, using
self:set_target(id), and to convert, you have to tell the game what to convert to using
self:set_conversion(type), whereas type is one of 0, 1 or 2.

self:screen_message("Message") will print the message next to your bug on the screen,
good to scare other bugs or see what your bug is doing.

self:set_path(x,y) sets the path for the self:begin_walk_path() function.

p("message") prints the message in your putty window, useful for debuggin.

self:wait_for_next_round() will, obviously, wait for one round, and actually give the
bug time to do anything.

6.3 Getting information

To make your decisions, you have to find out things about your environment.

self:pos() returns your current coordinates (e.g. x,y = self:pos())

self:speed() returns your maximum speed in coordinate units per second.

self:health() returns your current health level (0-100)

self:food() returns your current food store level.

self:max_food() returns your maximum food store level.

self:tile_food() returns the amount of food on the current tile.

self:nearest_enemy() returns the nearest enemy, and information about it. Use it like
this:

enemy_id, x, y, player = self:nearest_enemy()

Then enemy id is the enemy bug’s number (which can be used in self:set_target() or
self:attack()), x and y the coordinates (for example, to walk to) and player is the number
of the player the bugs belongs to.

4



7 Example Bot

Here is a bot that just tries to stay alive, eat as much as possible and spawn as often as
possible. It does not kill, it does not flee and it does not make points – that’s up to you!

function Creature:main()
local x1, y1, x2, y2 = world_size()
while not self:set_path(math.random(x1,x2), math.random(y1,y2)) do
end
self:begin_walk_path()
while self:is_walking() do

if self:tile_food() > 0 and self:food() < self:max_food() then
self:screen_message(’hmm’)
self:eat()
if self:health() < 80 then

self:heal()
end
self:begin_walk_path()

end
if self:health() < 20 or (self:food() == self:max_food() and self:↵

health() < 100) then
self:screen_message(’heal’)
self:heal()
self:begin_walk_path()

end
if not (self:type() == 1) and self:food() > 0.9 * self:max_food() ↵

and self:health() > 90 then
self:screen_message(’morph’)
self:convert(1)
self:begin_walk_path()

end
if self:type() == 1 and self:food() > 0.8 * self:max_food() and ↵

self:health() > 80 then
self:screen_message(’daddy’)
self:begin_spawning()
while self:is_spawning() do

self:wait_for_next_round()
end
self:begin_walk_path()

end
self:screen_message(’search’)
self:wait_for_next_round()

end
end

5



8 Final Words

This was the last time the Obroni Computer Club came together. I hope that all of your
could benefit from it in one way or the other, maybe by learning useful things, maybe by
having some fun, maybe be having a different view on computers. Although I had planned
to be here for a whole year, it did not work our. If you have questions why, or questions
related to what we have done in the club, or any other kinds of questions, feel free to e-mail
me at mail@joachim-breitner.de. I will you the best during your years at SOSHGIC and
especially the time “in the wild” afterward.

Joachim Breitner

6

mailto:mail@joachim-breitner.de

	Remember?
	More kinds of bugs
	Small Bug (type 0)
	Large Bug (type 1)
	Flying Bug (type 2)

	Converting
	Spawning
	Attacking
	Infon Reference
	Blocking actions
	Non-blocking actions
	Getting information

	Example Bot
	Final Words

