
Obroni Computer Club – A New Thing: Infon

Joachim Breitner

November 14,th 2006

We have been doing python for eight sessions now, you know a lot about it,
and from here you can discover it on your own, there is enough material online.
If you have problems you can still ask me for help, of course.

Today, I want to introduce a networked sife simulation environment (one could
call it a game, but that doesn’t sound very good at this school, I’m afraid) named
“infon”. On a small mazy world you control little bugs who have to eat, try not
to be eaten and maybe even eat the other bugs.

The interesting thing is that all your bugs live on the same server, thus com-
peting, and you can’t contol them directly. Instead, you program the “brain” of
the bugs, using a very simple programming language called “lua”.

1 Viewing the game

A game of infon is running our server, occ.soshgic.edu.gh. To view what’s going on, you
can run the graphical client in K:\Others\OCC\infon by double-clicking on the batch file.
You will see the world, maybe already a few bugs. You can grab the world with the mouse,
and change the resolution with the keys 1 through 5.

2 Joining the game

To take part in the action and control the bug, you can connect to the server using telnet.
Luckily, the putty program speaks telnet, so run K:\Others\OCC\putty.exe and connect
to occ, using protocol “telnet” and port 1234.

You will reach a prompt where you can enter commands. You get help with “?” and you
can see the current scores with “s”. To join the game, enter “j”. If you are re-connecting and
want to continue to use your old bugs, you can now select it. Otherwise create a new player
and enter a password, so you can later re-join. If you disconnect you have two minutes to
re-join with your password before the player will be removed.

If you are watching the game you can see two new bugs, your bugs. You should give your
player a better name than “player0”: “?” tells you that the command to change the player’s
name is “n”, so enter that and then type in a new name. You can also change the colour.

1



3 Controlling your bugs

Currently, your bugs sits around and do nothing but starve, which is unfortunate, because
every time a bug starves you lose three points. You can actually watch them stave: There
are two bars above their heads: The upper one shows how much food reserves they have
(and they don’t have any when the spawn) and the lower one shows the health, which is
decreasing if they have no food. When this bar reaches zero, the bug dies. So let’s look for
food, which you can see as green stuff on the map.

First, we have to get to the food, so let’s see how we can control the bug. For that,
we should start by opening the code that currrently runs on the bugs. You can find it in
K:\Others\OCC\infon\player-default.txt. As you can see, there is not much intelligence
in the bug, and in the Creature:main() part, where the main work should be done, nothing
is happening. First save the file somewhere on your H-drive so that you can make changes
to it.

Let’s change the behaviour a little bit. Change the last function to:

function Creature:main()
self:screen_message("Hello")

end

To load that code on the server, you run the “b” command in your putty session, and
then paste the code into the window (select it in the editor, copy, rightclick into the putty
window). To finish the program entry, enter a single dot on one line. You should be back
at the prompt, and your bug should suddently say “hello”.

Well, this does not bring us closer to food. So let’s try to move. And because we don’t
know where to move, we move randomly. So look at the following code:

function Creature:main ()
local x1, y1, x2, y2 = world_size()
while not self:set_path(math.random(x1, x2), math.random(y1, y2)) do
end
self:begin_walk_path()
while self:is_walking() do

self:wait_for_next_round()
end

end

To run this code, just paste it again using the “b” command. It will overwrite the old main
function.

This code first get’s the coordinates of the bug’s world, and using math.random, it selects
a random point in this world. This point might not be reachable (e.g. because it is a wall),
and in this case the set_path function returns false. Using a while not function we just
keep trying until we get a valid point.

If we have such a point, we tell the bug to start walking. While we are still walking, we
wait for the next round. This means: We keep doing what we are doing right now for one
round (which is 1/10th of a second)

Now let’s try to eat something. We can only eat what we stand on, and we can find out
how much food there is to take using self:tile_food(). So if we are walking somewhere
and on our way we find some food, we might as well eat that:

2



function Creature:main()
local x1, y1, x2, y2 = world_size()
while not self:set_path(math.random(x1, x2), math.random(y1, y2)) do
end
self:begin_walk_path()
while self:is_walking() do

if self:tile_food() > 0 then
self:eat()
self:begin_walk_path()

end
self:wait_for_next_round()

end
end

The but is still not very smart: It could search for food in the vincinity of other food.
Additionally, it will lose health and it should heal itself is possible. Try it yourself!

4 Debugging

It might happen that although your program looks fine, your bug just sits there and does
nothing. Or it does something, but for some reason not what you want. Then it is important
to find out whats happening.

To find out about programming errors, for example typos in the method names, use the
“i” command. If there was an error in the code of one of your bugs, you will find it there.

Otherwise it helps to put in p("Some message") commands in your code. This will print
the message to putty, and you can easily follow which code is doing what and when.

5 A note on lua syntax

Lua is such a simple language that there should be no need for explanation for python-cracks
like you. But a few hints:

• Blocks like while ... do, function or if ... then have to be ended by end.

• Dependening on what you want to with variables, you should create them in one of
these ways:

1. If you want it to be used only in the current function, put a local in front of it
when you use it the first time.

2. If the variable should be shared by all your bugs, just use it without anything
special.

3. If it should be separate for any of your bugs, but available in all functions, then
name it self.name_of_variable.

For mor information on lua, see http://www.lua,org/.

3

http://www.lua,org/


6 Infon Reference

From here on, you can explore the program by yourself. Here is a reference of some of the
functions you might want to use. For more information, read http://infon.dividuum.de/

I will only cover eating and movement. If you want to find out more about attacking and
evolving, read the website. We might cover it next week.

6.1 Blocking actions

These actions are called “blocking” beacause once you start it, the bug will happily keep
doing it until it is done, and (almost) nothing will stop it.

self:moveto(x,y) will start moving the bug to the specified coordinate, and not return
until we are there. If that is not possible, for example, because we would walk onto a wall,
the function will immediatelly return, returning the value “false”.

self:heal() will start healing the bug. That means that the health bar is increasing, but
the food bar is decreasing. It will run until it can’t heal any more (either fully recovered or
out of food).

self:eat() will eat all the food on the current tile, and won’t return until it is all eaten
or the bug can’t eat any more.

6.2 Non-blocking actions

You can also program your bug non-blocking, which is a bit harder, but more powerful.
Non-blocking means that you tell the bug what to do next, but it won’t be doing it until
you call self:wait_for_next_round(). This allows you to change your mind while doing
something, for example, starting to eat while going somewhere else.

For every possible action there is a “begin”-function that sets your bug to do something,
and an “is”-function to check if he is (still) doing this thing. They are:

• self:begin_idling() and self:is_idle()

• self:begin_walk_path() and self:is_waling()

• self:begin_healing() and self:is_healing()

• self:begin_eating() and self:is_eating()

self:screen_message("Message") will print the message next to your bug on the screen,
good to scare other bugs or see what your bug is doing.

self:set_path(x,y) sets the path for the self:begin_walk_path() function.

p("message") prints the message in your putty window, useful for debuggin.

4

http://infon.dividuum.de/


self:wait_for_next_round() will, obviously, wait for one round, and actually give the
bug time to do anything.

6.3 Getting information

To make your decisions, you have to find out things about your environment.

self:pos() returns your current coordinates (e.g. x,y = self:pos())

self:speed() returns your maximum speed in coordinate units per second.

self:health() returns your current health level (0-100)

self:food() returns your current food store level.

self:max_food() returns your maximum food store level.

self:tile_food() returns the amount of food on the current tile.

7 Outlook

The bugs can now run around and eat stuff, which is nice. But with Infon, there is more to
explore:

• The “King Of The Hill”-tile (KOTH) in the middle: Whoever sits on it for a while
get’s points for that. But beware, you might be easy game for attacking bugs.

• There are three kind of bugs, type 0, which can only eat and eventually convert to
type 1 or type 2 (who then could convert back if they want).

• Type 1 bugs can actually attack and kill other bugs, and make more points in doing
so.

• Type 2 can fly over walls and water.

• You can feed (give food to) your other bugs, for example to feed one who has conquered
the KOTH.

• Events: You can define functions to react on certains things like being attacked or
spawning.

I will keep the server running (at least until the next power outage, please remind me if
I forget to restart it), and I hope that by next week some smart bugs are running around!

5


	Viewing the game
	Joining the game
	Controlling your bugs
	Debugging
	A note on lua syntax
	Infon Reference
	Blocking actions
	Non-blocking actions
	Getting information

	Outlook

