More Fixpoints! (Functional Pearl)

JOACHIM BREITNER, unaffiliated, Germany

Haskell’s laziness allows the programmer to solve some problems naturally and declaratively via recursive
equations. Unfortunately, if the input is “too recursive”, these very elegant idioms can fall into the dreaded
black hole, and the programmer has to resort to more pedestrian approaches.

It does not have to be that way: We built variants of common pure data structures (Booleans, sets) where
recursive definitions are productive. Internally, the infamous unsafePerformlO is at work, but the user only
sees a beautiful and pure API, and their pretty recursive idioms — magically — work again.

CCS Concepts: » Software and its engineering — Recursion; Functional languages.
Additional Key Words and Phrases: Haskell, recursion, fixpoint

ACM Reference Format:
Joachim Breitner. 2023. More Fixpoints! (Functional Pearl). Proc. ACM Program. Lang. 7, ICFP, Article 211
(August 2023), 25 pages. https:/doi.org/10.1145/3607853

1 INTRODUCTION

Haskell is a pure and lazy programming language, and this laziness allows us to express some
algorithms very elegantly, by recursively referring to currently calculated values. A typical and
famous example is the following definition of the Fibonacci numbers as an infinite stream:

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

This is often called “knot-tying”, because a value (here fibs) has a definition involving itself.

1.1 Tying the Knot with Graphs

A maybe more practical example is the following calculation of the reflexive transitive closure of a
graph, i.e. for each vertex the set of vertices reachable from it. Let us represent a graph as a map
from vertices (of type Int) to lists of adjacent vertices, which we assume to be in the domain of the
map (This keeps the examples concise, as then the lookup operator M.! won’t fail):

import qualified Data.Map as M
import qualified Data.Set as S
type Graph = M.Map Int [Int]

The reflexive transitive closure can be very elegantly expressed by knot-tying a map from vertices
to their set of reachable vertices:

rTrans1 :: Graph —> Graph
rTrans1 g = M.map S.toList reaches
where
reaches :: M.Map Int (S.Set Int)
reaches = M.mapWithKey (\v vs —> S.insert v (S.unions [reaches M.! v' | v' <= vs])) g

Author’s address: Joachim Breitner, mail@joachim-breitner.de, unaffiliated, Freiburg, Germany.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 Copyright held by the owner/author(s).

2475-1421/2023/8-ART211
https:/doi.org/10.1145/3607853

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 211. Publication date: August 2023.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0003-3753-6821
https://doi.org/10.1145/3607853
https://orcid.org/0000-0003-3753-6821
https://doi.org/10.1145/3607853

211:2 Joachim Breitner

o_@_p a0

Fig. 1. Two graphs

This code is remarkably close to the prosaic specification “the reachable vertices from a vertex v
are v itself, plus all the vertices reachable from any of its successors vs”; hence we can consider this
program to be declarative.

Note how the definition of reaches refers to itself — we are “tying a knot”.

1.2 It Works, Until It Doesn’t

This is the kind of code we like to impress our strict-language-using friend with, and it works quite
nicely on a small graph (Figure 1, left graph):

ghci> rTrans1 (M.fromList [(1,[3]),(2,[1,3]).(3,[]])
fromList [(1,[1,31),(2,[1,2,3]),(3.[3])]

At least until our strict-language-using friend challenges us to add just one small edge to the graph
(Figure 1, right graph):

ghci> rTrans1 (M.fromList [(1,[2,3]),(2,[1,3]),(3.[1)])
fromList [(1,fromList ~Cinterrupted.

Now the graph has a cycle (1 — 2 — 1) which makes our code get lost in an infinite loop, until we
abort the program.

This is quite disappointing! In order to handle cyclic graphs as input as well, we have to implement
this in a much more tedious way, maybe with an explicit loop, keeping track of the set of seen
vertices (see Appendix A if you really want to see it, but the goal is that you shouldn’t have to). It
works, and most of us have likely written that idiom before, but we cannot impress our friend with
that.

But it seems it should work: The declarative specification, from which we have derived rTrans1,
holds for cyclic graphs as well, so it does not seem too unreasonable to expect the above code to
handle cyclic graphs as well. Where does it go wrong? The way we use the lazy map data structure
is fine; it helps us to express the set of reachable vertices by way of other such sets. The problem is
that the set data structure, with its operations insert and union, is not lazy enough: union wants to
know the value of its arguments before it can produce something useful, and thus cannot be used
in a recursive, knot-tying way.

1.3 We Need Better Sets!

In this paper we present a data structure for sets, called RSet, where such recursive expressions do
work! Its API is almost the same as that of Data.Set, Haskell’s standard library for finite sets. In
particular, it also consists of plain pure functions — no monads necessary. The fragment of the API
relevant for our example is:

insert :: Ord a => a —> RSet a —> RSet a
unions :: Ord a => [RSet a] —> RSet a
get u RSet a —> Set a

We find the two operations used by rTrans1, with type signatures mirroring those of Data.Set exactly,
and a function get that converts such a RSet to a normal Set.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 211. Publication date: August 2023.

More Fixpoints! (Functional Pearl) 211:3

We can use this data structure without changing the structure of our code; we just swap out the
operations (imported qualified as RS) and convert back to conventional sets in the end:

rTrans2 :: Graph —> Graph
rTrans2 g = M.map (S.toList . RS.get) reaches
where
reaches :: M.Map Int (RS.RSet Int)
reaches = M.mapWithKey (\v vs —> RS.insert v (RS.unions [reaches M.! v' | v' <= vs])) g

And indeed, this can handle cyclic graphs, and get the correct result:

ghci> rTrans2 (M.fromList [(1,[2,3]),(2,[1,3]).3.[])
fromList [(1,[1,2,3]),(2,[1,2,3]),(3,[3])]

1.4 Contributions

From the user’s point of view, that is almost all there is to say: There is a library of types (sets,
Booleans, maps) you can use like the conventional types, and suddenly your favorite knot-tying
tricks work even better. In Section 2 we’ll explore this library from the user’s point of view some
more, followed by a larger program analysis case-study in Section 3. Then we take a look at how
the library works under the hood (Section 4), and point out some limitations (Section 5). Finally we
take a brief glance at related approaches (Section 6).

The main contribution of this paper is to demonstrate that we can make more data types
recursively definable, and thus solve more problems elegantly and declaratively. This can be
implemented as a regular Haskell library’, using GHC’s unsafePerformlO primitive under the hood,
but providing a safe and pure interface.

2 EXPLORATION

In the introduction we have used a data type RSet with an API that resembles that of the Set data
structure in Haskell’s Data.Set library. Let us explore this data structure some more from the user’s
point of view, to get a better understanding of how it is different from the ordinary Set, and to
whet the appetite for the look at its implementation in Section 4. Figure 2 gives a comprehensive
overview of the API

2.1 Just an Isomorphic Copy?

At the first glance, RSet looks like an isomorphic copy of Set, with get :: RSet a —> Set a and
mk :: Set a —> RSet a converting between the types, and all the operations on RSet behave as their
counterpart on Set. Let’s quickly check that [Claessen and Hughes 2000]:

ghci> quickCheck $ \s —> RS.get (RS.mk s) === s

+++ OK, passed 100 tests.

ghci> quickCheck $ \s1 s2 —> RS.get (RS.union s1 s2) === S.union (RS.get s1) (RS.get s2)
+++ OK, passed 100 tests.

The second equation generalizes to all operations in the API, giving them a straight-forward
specification in terms of the corresponding operation on the underlying ordinary data type. But
there must be a difference, else we would not be writing this paper.

Latest version at https:/hackage.haskell.org/package/rec-def, archived artifact at [Breitner 2023]

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 211. Publication date: August 2023.

https://hackage.haskell.org/package/rec-def

211:4 Joachim Breitner

module Data.Recursive.Set where —— imported as RS here
data RSet a
get : RSet a —> Set a
mk :: Set a —> RSet a
empty o RSet a
singleton a—> RSet a
insert :Orda=>a->RSeta—> RSet a
delete :Orda=>a->RSeta—> RSet a
union : Ord a => RSet a —> RSet a —> RSet a
unions : Ord a => [RSet a] — RSet a
intersection :: Ord a => RSet a —> RSet a —> RSet a
member +0Orda=>a—->RSeta—> RBool
null i RSet a —> RDualBool
when :: RBool —> RSet a —> RSet a
id i RSet a —> RSet a
module Data.Recursive.Bool where —— imported as RB here
data RBool
get :: RBool —> Bool
mk :: Bool —> RBool
true, false :: RBool
(&&), () : RBool —> RBool —> RBool
and, or : [RBool] = RBool
not :: RBool —> RDualBool
id :: RBool —> RBool
module Data.Recursive.DualBool where —— imported as RDB here
data RDualBool
get :: RDualBool —> Bool
mk :: Bool —> RDualBool
true, false :: RDualBool
(&8&), () :: RDualBool —> RDualBool —> RDualBool
and, or : [RDualBool] —> RDualBool
not :: RDualBool —> RBool
id :: RDualBool —> RDualBool

Fig. 2. The API of recursively definable sets and Booleans

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 211. Publication date: August 2023.

More Fixpoints! (Functional Pearl) 211:5

2.2 Recursion!

The difference is that with RSet, recursively defined expressions work! For example, using the ordinary
Set from Data.Set (imported qualified as S), evaluating recursive expressions tends to hang:

ghci> let s = S.insert 42 s in s
fromList ~CInterrupted.

With RSet, it simply works:

ghci> let s = RS.insert 42 s in RS.get s
fromList [42]

It works for larger expressions as well

ghci> let s = RS.insert 42 (RS.union (RS.insert 23 s) (RS.delete 42 s)) in RS.get s
fromList [23,42]

Not even mutual recursion poses a problem:

ghci> let s1 = RS.insert 42 s2

ghcil s2 = RS.insert 23 s3

ghci| s3 = RS.delete 42 s1

ghci| in (RS.get s1, RS.get s2, RS.get s3)
(FromList [23,42],fromList [23],fromList [23])

In these examples, we build the graph of recursively defined RSet values explicitly, using let. In
practice one would more likely construct that graph using lazy data structures and knot-tying,
maybe dynamically based on some input, as done in the introduction.

2.3 Fixpoints

It may come as a pleasant surprise that these expressions are productive, i.e. that we even obtain a
(non-bottom) result. But is it the right result? If we look at the last example above we can see that
the ordinary sets we get for each of the three variables makes the three defining equations true:

ghci> let s1 = S.fromList [23,42]; s2 = S.fromList [23]; s3 = S.fromList [23]
ghci> s1 == S.insert 42 s2

True
ghci> s2 == S.insert 23 s3
True
ghci> s3 == S.delete 42 s1
True

Good! That is how we want equations in a functional programming language to behave.

At this point you might interject that these are not the only possible solutions to this system
of equations. Returning to the smaller example of let s = RS.insert 42 s, we find that our result
S.fromList [42] indeed solves the equation s == S.insert 42 s, but so does S.fromList [42,43]. Still, we
would not consider that a “good” solution, and would be surprised if we’d get that. That is because
we expect the result to be the least fixpoint; the solution that is, among all possible solutions, the
smallest with regard to a particular partial order.

In the context of sets the natural order is subset inclusion. Therefore, a possibly recursive
expression of RSet values will evaluate to the smallest sets solving the definitional equations.

It will always do so, provided that

o only finitely many RSet values are involved and
e no definition of a rs :: RSet depends on the expression RS.get rs.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 211. Publication date: August 2023.

211:6 Joachim Breitner

Using RS.get drops us in the world of ordinary sets, and the magic disappears:

ghci> let s = RS.mk (RS.get (RS.insert 42 s)) in RS.get s
fromList ~Clnterrupted.

In this sense, RS.mk . RS.get is not the identity function.

2.4 More Than Sets

The library not only provides recursively definable sets, but also other data types, in particular a
variant of the ordinary Booleans that are recursively definable; see Figure 2 for an excerpt of the
API Again, we have analogues of the usual operations (literals, conjunction and disjunction), and
as before, a possibly recursively defined expression of type RBool will evaluate to “the” Boolean
value which solves these defining equations.

What happens if both True and False would solve an equation, like in the following case?

ghci> let x = x RB.|| x in RB.get x
False

We can see that RBool considers False as the least element, and for some use-cases that is the right
choice. But for other use-cases, one would prefer True over False. Therefore, the library provides a
separate module and data type RDualBool, again with the full set of operations on Booleans, but
this time returning True if possible:

ghci> let x = x RDB.|| x in RDB.get x
True

2.5 Monotonicity

These data types — RSet, RBool, RDualBool — are not silos, and you will find among the functions
in Figure 2 some that connect these types: negation on Booleans, member checks on sets, the
emptiness check on sets, and the function when, which guards a set depending on a boolean. This
means that even recursive expressions involving multiple of these types will produce a result.

So why does RS.member return a RBool, but RS.null returns a RDualBool? And why is there no
function RB.not :: RBool —> RBool? It is because all functions involved here must be monotonic:
smaller arguments must lead to smaller results. And because the empty set is smaller than non-
empty sets, RS.member must return a RBool (where False is smaller than True), but RS.null must go
to RDualBool (where True is smaller than False).

If we did not pay attention to this while defining the API, and added non-monotonic functions
(like RB.not :: RBool —> RBool), the user would be able to write equations that do not have a solution,
such as let x = not x, and we would like to statically rule that out.

The underlying bit of theory is the theorem that a monotone function f : A — A on a partially
ordered set A with least element L € A and finite height has a unique least fixed point. This is
well-known consequence of the Knaster-Tarski theorem (e.g. see [Pottier 2009]), and if the sentence
means something to you, you probably already saw it coming. And if it doesn’t, it does not matter
for reading this paper.

2.6 Termination

Another function from Data.Set that we do not have is map :: Ord b => (a —=> b) —> Set a —> Set b.
This may be a bit surprising, as this function is perfectly monotonic with regard to the subset
relation. But it can cause other problems: Imagine we had it, and wrote

let s = RS.insert 0 (RS.map (+1) s) in RS.get s

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 211. Publication date: August 2023.

More Fixpoints! (Functional Pearl) 211:7

Does this equation have a solution? Clearly the set s needs to contain 0. But then it also needs to
contain 1. And 2. And so on. So the solution would have to be the set of all natural numbers, but
that is not something that Data.Set, being a data structure of finite sets, can represent.

So we cannot allow this function for RSet if we want to guarantee a result for every finite
recursive expression.

For the theoretically inclined, this is linked to the theorem that if A has finite height, the smallest
fixed-point of a monotonic function f can be found by starting with L and iterating f. You might
be irked that the type Set a, ordered by subset inclusion, does not actually have finite height (if a is
not finite). With the current API (without functions like map) for every finite RSet expression there
are only finitely many possible members, and thus the relevant “subtype” has finite height, and all
is well again.

It would not be unreasonable, however, to add map to the RSet API, as it may be quite useful for
some applications, and maybe in these applications the equations have a finite solution just fine.
If we’d do that, we could no longer guarantee termination for all possible expressions (as shown
by the example above). But if an expression yields a result, it will be the least fixed point of the
defining equation. One can argue that this would be fine for a Haskell library: Haskell programmers
are used to dealing with partiality due to non-termination.

2.7 The Black Hole

We said that “all finite, possibly recursive expressions yield a result”. Unfortunately, that is not
completely true: If a value of type RSet is defined to be simply itself, with none of the RSet operations
involved, it will not work:

ghci> let s = s in RS.get s
fromList ~Clnterrupted.

And it’s not for lack of a solution: Clearly the empty set is the least solution to the equation s =='s.

Because our library is but a library, despite the apparent magic inside (which we will uncover in
Section 4), with a definition like let s = s, it has no chance to insert its magic. The problem goes
away as soon as any function from the API is involved in the definition, even if it is semantically
the identity:

ghci> let x = RS.unions [x] in RS.get x
fromList []

This is a little stumbling block when using this library. And while programmers are unlikely to
write let x = x directly, the same thing can happen when tying the knot via a lazy data structure. In
that case, the programmer is advised to insert a semantic identity function in a suitable position;
the API provides RS.id :: RSet a —> RSet a for that purpose. A programming language that integrates
these features first-class could take care of this automatically.

3 CASESTUDY: A PROGRAM ANALYSIS

Before we leave the user’s point of view and look under the hood of the library, let us walk through
a slightly larger and more realistic use-case. We hope that this example shows that using recursively
definable values allows for noticeably more declarative and elegant programs.

3.1 First Without Recursion

Let us consider a small program analysis of a functional language with lazy let-bindings, (mutual)
recursion and exceptions. It should determine whether evaluating an expression may throw an
(uncaught) expression.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 211. Publication date: August 2023.

211:8 Joachim Breitner

type V = String
data Exp = Var V | Lam V Exp | App Exp Exp | Throw | Catch Exp
| Let V Exp Exp | LetRec [(V, Exp)] Exp

Fig. 3. An AST for a functional language with mutual recursion and exceptions

To set the stage, Figure 3 contains a typical Haskell datatype for its abstract syntax. The LetRec
constructor takes a list of declarations (each with a name and definition) and a body; all bound
variables are in scope in all the right-hand sides and the body. Variable names bound in Lam, Let
and LetRec shadow outer occurrences. (The resemblance to GHC’s intermediate language Core
[Peyton Jones and Marlow 2002] is certainly not a coincidence.)

Let us ignore LetRec at first, and write our analysis as a simple traversal of the AST:

canThrow :: Exp —> Bool
canThrow e = go M.empty e

where
go :: M.Map V Bool —> Exp —> Bool
go env (Var v) =env M.!v
go env Throw = True
go env (Catch e) = False
go env (Lam v e) = go (M.insert v False env) e

go env (App e1 e2) =go env el || go env e2
go env (Let v e1 e2) = go env' e2

where
env_bind = M.singleton v (go env e1)
env' = M.union env_bind env

Our language is lazy, so to determine whether evaluating a variable can throw, we have to carry
around an environment of type M.Map V Bool where we remember whether the corresponding
right-hand side could throw. Throw and Catch certainly can resp. cannot throw. The analysis isn’t
higher order, so for lambdas we assume they can throw if their body can throw, and for applications
if either subexpression can throw. Finally for Let, we extend the environment with the analysis
result of the bound variable’s right-hand side and descend.

3.2 Avoiding the Black Hole

So far, so standard. But what about LetRec? Here, the analysis result of each right-hand side depends
on the analysis results of all right-hand sides. We can try to simply do what we did in the Let case:

go env (LetRec binds e) = go env' e
where
env_bind = M.fromList [(v, go env' e) | (v,e) <— binds]
env' = M.union env_bind env

Note that, crucially, we use the extended environment env' not only for the body, but also for the
right-hand sides.

Alas, this does not work: As soon as we try to analyze an expression that uses recursion, we will
fall into a black hole. The crux is that Bool is not recursively definable, because its operations (here
only disjunction, (||)) are not lazy.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 211. Publication date: August 2023.

More Fixpoints! (Functional Pearl) 211:9

But if we use RBool instead of Bool, it just works:

canThrow :: Exp —> Bool
canThrow e = RB.get (go M.empty e)

where
go :: M.Map V RBool —> Exp —> RBool
go env (Var v) =env M.!'v
go env Throw = RB.true
go env (Catch e) = RB.false
go env (Lam v e) = go (M.insert v RB.false env) e

go env (App e1 e2) =go env el RB.|| go env e2
go env (Let v e1 e2) = go env' e2

where
env_bind = M.singleton v (go env e1)
env' = M.union env_bind env
go env (LetRec binds e) = go env' e
where

env_bind = M.fromList [(v, RB.id (go env' e)) | (v,e) <— binds]
env' = M.union env_bind env

All we had to do was to use RBool instead of Bool in the type of the local, use the corresponding
operations (RB.true, RB.false and RB.||) and project out to normal Booleans at the end (using RB.get).
A slight blemish is that we also had to insert a call to RB.id to not fall over the input LetRec [("x",
Var "x")], as explained in Section 2.7.

It is worth noting that the environment (M.Map V RBool) is still a conventional lazy map, not
some RMap. We use it to tie the knot for the recursive equations on RBool, just as we did in the

example in the introduction, but no further magic is needed.

3.3 Using All the Values

The example above calculates only one final result, namely whether the whole expression canThrow.
A real compiler pass might want to use the analysis result at each node to update the AST (e.g.
remove redundant calls to Catch, or remember analysis results in the AST as GHC would do). To
keep the example simple for the paper we do not do that, as the necessary plumbing would obscure
the point (see Appendix B for the complete function).

But our library does allow it: we can use RB.get within the function to get the analysis result for
any subexpression and return a changed AST accordingly, e.g.

go :: M.Map V RBool —> Exp —> (RBool, Exp)

go env (Catch e) = (RB.false, new_eg)
where
(can_throw, e') = go env e
new_e | RB.get can_throw = Catch e’
| otherwise =e'

We’d have to be careful that the RBool returned by go does not depend on any decision made based
on a boolean that was obtained with RB.get. For such a fused analysis/transformation pass this is
typically possible.

3.4 Alternative Approaches

What would we do if we did not have RBool at our disposal? Here are some common options:

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 211. Publication date: August 2023.

211:10 Joachim Breitner

e We can perform an explicit fixpoint analysis in the LetRec case: Initialize the env_bind with
all variables mapped to False, descend, check if now any analysis result has changed, and if
so, re-analyze all of them, until we find a solution.
Maybe we can be more clever and re-analyze only some of them.
Maybe some of that logic can be extracted into a suitable fixpoint operator.
In any case, we would obscure the declarative intent of the code with lower-level bookkeeping.
If we do that naively, we can run into the problem that in the presence of nested recursive
lets, the nested fixpoint iteration comes with exponential complexity.
In the case where the analysis result is persisted as annotations in the syntax tree anyways,
we can address this issue by starting the fixpoint iteration not from bottom, but from the
result of the previous outer iteration. GHC does this, as explained in Sergey et al. [2017,
Section 6.6], but again at the cost of more plumbing obscuring the code’s intent.
Another approach is to gather the full data flow problem from the whole AST, solve it globally
(thus also avoiding the problem mentioned in the previous bullet), and then distributing the
analysis again to where we need it. This is reminiscent of how a constrained-based type
inference algorithm works.
It is a satisfying to know that the solving algorithm is free from having to follow the syntactic
nesting structure of the program, and that the repeated passes of the fixpoint iteration do not
require us to traverse and re-analyze the AST over and over. The solver only sees the pure,
distilled data-flow equations.
There are, however, petty practical issues with this approach (representing the equations as
data, uniquely naming the cells, the separate passes for collecting the equations and using
the results). At this point, one is likely going to hide this bookkeeping in a suitable monad,
which can recover some of the lost elegance, but if the code could otherwise be written as
pure functions, that is still quite a price to pay — see Section 6.5 for where one such attempt
led to.

When our library is applicable, it allows us to retain the concise elegance of the pure code
that does not bother with the “how” of solving equations, while under the hood the solver has a
comprehensive global view of the problem.

4 UNDER THE HOOD

We hope that by now you are eager to learn how the RSet library is implemented. It is a regular
Haskell library, without dedicated compiler support nor using compiler plugins. Maybe this sounds
impossible, and we agree: The API and specification presented in the previous section cannot be
implemented in normal, safe, pure Haskell code.?

But it can be implemented using “unsafe” features; in particular GHC’s infamous function
unsafePerformlO :: 10 a —> a, which allows arbitrary side-effects in pure code. Before you turn away
in disgust please allow us to quote Peyton Jones et al. [1999] from their publication introducing
this primitive:

However “unsafe” is not the same as “wrong”. It simply means that the programmer,
not the compiler, must undertake the proof obligation that the program’s semantics
is unaffected by the moment at which all these side effects take place. [...] So, we
regard the primitives of this paper as the raw material from which experienced systems
programmers can construct beautiful abstractions.

This is our goal; whether the abstraction presented in Section 2 is beautiful is in the eye of the
beholder.

2At least we believe it is not possible, for reasons we lay out in Section 5.1.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 211. Publication date: August 2023.

More Fixpoints! (Functional Pearl) 211:11

4.1 A Naive Implementation

The core idea behind the implementation can be explained in two simple steps: First, we use an
imperative API to declare values, register their relationships and read their values, and then we
wrap that in a pure and sufficiently lazy API. We begin by outlining a naive implementation that
initially ignores issues of reentrancy-safety, modularity, performance and space-leaks.

4.2 An Imperative Core
A typical imperative API to describe and solve a set of recursive equations provides functions to

(1) register the variables, or cells, that occur in the equations

(2) define how such a cell is related to other cells

(3) finally read the value of the cells.
To keep the example code small, we focus on just sets and insertion as the only operation, and
could imagine an API like the following:

data Cell a
newCell n 10 (Cell a)
defCellinsert :: Ord a => Cella—>a —> Cella—> 10 ()
getCell :: Cella —> 10 (Set a)
A typical use of this API, solving the two mutually related set equations
s;={42} Us,
s3 = {23} U s

would be

ghci> c1 <- newCell

ghci> c2 <— newCell

ghci> defCellinsert ¢1 42 c2
ghci> defCellinsert c2 23 c1
ghci> getCell c2

fromList [23,42]

At this point, the actual implementation of this API is not that interesting. In a simple imple-
mentation a cell would consist of a current value (initialized to the empty set), and a list of cells
depending on this value, and then the changes due to calls to defCellinsert are propagated through
this network until no more changes need to be propagated (Appendix C re-phrases this summary
in Haskell). Of course, more sophisticated algorithms may lurk underneath this interface.

4.3 The Pure Wrapping
The more interesting question is how to get from the imperative Cell code to the pure RSet API,
consisting of just insert :: a —> RSet a —> RSet a and get :: RSet a —> Set a?

Clearly, insert must somehow both create a new cell, and define its equation. Furthermore, it
has to be lazy in its second argument, else a recursive equation would immediately loop, so it
somehow has to defer the call to defCellinsert a bit. This leads to the code seen in Figure 4, which
we go through in detail:

A value of type RSet consists of three fields

e The Cell a backing the value we are defining.

e An |0 () action, deferred until the value is actually needed. A value is needed if get is used on
this RSet, or on another RSet that depends on this one.

o A flag to remember if this deferred action has run already.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 211. Publication date: August 2023.

211:12 Joachim Breitner

data RSet a = MkRSet (Cell a) (10 ()) (IORef Bool)

insert :: Ord a => a —> RSet a —> RSet a
insert x r2 = unsafePerformIO $ do
¢1 <- newCell
done <- newlORef False
let todo = do
is_done <- readlORef done
unless is_done $ do
writelORef done True
let (MkRSet c2 todo2) =r2
defCelllnsert ¢1 x c2
todo2
return (MkRSet c1 todo done)

get :: RSet a —> Set a

get (MkRSet c todo _) = unsafePerformlO $ do
todo
getCell ¢

Fig. 4. Wrapping an imperative propagator library in a pure way

The function get does not do much: It triggers the todo action, and afterwards returns the current
value of the cell. The interesting bits are in the insert function: It creates a new cell to represent the
result, and a “done”-flag. It returns these together with a todo-action, which is not yet run. Note
that the second argument, r2, is not looked at yet, so insert is lazy, as required.

The todo action itself uses the flag to ensure it is only run once. Only therein the value r2 is
analyzed, and the relationship between the cells is registered. It also runs the todo action of the
other cell. This way, a single call to get will recursively trigger the todo actions of all involved
values — and the “done”-flags prevent that process from running in cycles.

4.4 Less Naively, Please

This code describes the essence of our idea, and easily generalizes to the other operations of the
RSet APL It is, however, naive in a few ways that are worth discussing.

4.4.1 Reentrancy and Thread Safety. The done flag is used to ensure that the todo action is run
exactly once. But if get is invoked concurrently, the code above is obviously racy.

Even worse: Because this is run from unsafePerformlO, even in a single-threaded environment
we have to worry about reentrancy, as forcing any unevaluated user-provided expression could
kick off execution of another call to get.

In our library we address this with careful use of the MVar concurrency primitive [Peyton Jones
et al. 1996], and hide this cleanly behind a small abstraction for “possibly recursive 10-thunks” in
the System.l0.RecThunk module.

The dejafu test library [Walker and Runciman 2015], which can exhaustively explore all possible
interleavings of concurrent code, has proven invaluable when implementing that abstraction: more
than once we thought we had finally achieved thread-safety, only to be told that we were not there
yet, until we eventually were able make the tests pass.

4.4.2 Modularity. The naive code above supports just one value type, Set, because the underlying
imperative propagator library Cell only supports that type. The full library abstracts over the

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 211. Publication date: August 2023.

More Fixpoints! (Functional Pearl) 211:13

underlying propagator. This way we can have recursively defined values of different types (RSet a,
RBool), operations connecting them (e.g. member) and so even allow solving heterogeneously typed
sets of equations.

Supporting different propagator libraries also opens the way for important performance opti-
mizations that are specific to various value types. The most generic propagator implementation
assumes no structure on its values besides equality, and just keeps propagating changes until the
graph has stabilized. But if we can have different propagator implementations for different types,
smarter propagator libraries can be written.

For example for Booleans, a cell changes its value at most once, from False to True. Once it is True,
it will never change again, and one can drop its connection to other cells (see the Data.Propagator.P2
module).

Similarly, a propagator library for finite sets can propagate just deltas, instead of always recom-
puting the sets from its full inputs, to avoid repeating work. (This is not yet implemented in our
library, but would be possible without affecting the public APL)

4.4.3 Space leaks. Another, maybe subtle, problem with our pure wrapping of an imperative
propagator library is that it can easily lead to space leaks.

Consider the insert function. With let rs2 = RS.insert x rs1 we create a new mutable cell for rs2,
and tell the mutable cell in rs1 to notify us of any changes. This means that now somewhere in rs1
there is a reference to rs2 — exactly the other way around from what one would expect from the
code. This reference prevents resources allocated for rs2 from being freed while rs1 is alive.

This causes space leaks, where allocated resources are kept alive longer than expected or needed.
As an extreme example, consider this interaction

ghci> RS.get (RS.insert 42 RS.empty)
fromList [42]

The call to insert allocates a new cell and registers it with the cell in RS.empty. But RS.empty is a
static value, and will never be garbage collected!

To fix this, we exploit that once we are done calculating a value (either because we query it using
get, or because it is needed in the calculation of such a value), it will never change any further. So
our propagator API allows “freezing” a cell, which drops the references to the dependent cells, and
the pure wrapper freezes cells after the value is computed.

5 CAVEATS

The library presents itself with a innocent looking, pure and simple interface (Figure 2), but the
implementation is full of side-effects (as seen in Section 4). One might justifiably worry: Is this
really pure? Did we create a beautiful abstraction, or are the types a lie?

We believe the library is indeed pure: The exposed API is designed so that a set of equations has
a unique solution, and since it solves these equations, the nice equational theory one expects from
a pure functional program still holds. Yet, there are some caveats worth pointing out.

5.1 Contextual Equivalences and Lambda Lifting

In general in Haskell, if we have a recursive value definition involving an expression e, it is ok to
turn that into a recursive function definition abstracting over that expression: We can go from

letx=..x..e..inx
to

letxy=...(Xy)..y..inxe

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 211. Publication date: August 2023.

211:14 Joachim Breitner

without changing the program’s meaning. This transformation is called lambda lifting.
With our library, this change can now make the difference between termination and non-
termination:

ghci> let rs = RS.insert 42 rs in RS.get rs
fromList [42]

ghci> let rs y = RS.insert y (rs y) in RS.get (rs 42)
fromList ~Clnterrupted.

This is not a simple infelicity of the current implementation, but a fundamental limitation: In the
original program, our library can get its (magic, unsafePerformlO-powered) hands on a finite graph
of recursively defined values. In the transformed program there is now a recursive function that
endlessly creates new values, and our library will never see a complete set of equations. It seems
that no (reasonable) implementation of the interface in Figure 2 can solve this problem. (This also
shows that a pure implementation of that interface indeed does not exist.)

This limitation exists already in Haskell, albeit in a less severe form: The nice and fast knot-tied
fibs from the introduction becomes horribly inefficient once you turn it into a recursive function
(let fibs x y = x : y : zipwith (+) (Fibs x y) (tail (Fibs x y))).

In that sense, lambda lifting is only an equivalence as long as we ignore (asymptotic) complexity,
and breaking that equivalence may not be as bad as it first seems. In particular, since an optimizing
compiler tends to be careful to not worsen the asymptotic complexity, and will not just willy-nilly
break sharing, it will not apply transformations that break in the presence of our library.

Sabry [1998, Fact 3.7] points out that merely changing the set of observational equivalences does
not, in general and on its own, imply that the extended language is no longer pure.

5.2 Equivalence of Sets

The purity of this library rests on the fact that the equations have a unique solution, and therefore
it does not matter how the result is calculated. This argument has a weakness in the case of RSet
because the underlying Set type, implemented as a weight-balanced binary search tree [Adams 1992;
Nievergelt and Reingold 1972], does not have a unique representation, and a different evaluation
order may lead to results that are differently represented. This is only observable by intentionally
breaking the abstraction via the Data.Set.Internal module, but it is possible.

5.3 Unproven Claims

Our claims above about the safety and purity of the exposed interface are not yet backed by a
formal proof. Executing such a proof would first require a formal notion of what “pure” even means,
which is not quite clear. Formal criteria have been proposed by Sabry [1998], Longley [1999] and
[Hofmann et al. 2010], but they do not easily apply to our setting. Additionally, we’d need a formal
framework that allows us to reason about lazy programs with unsafePerformlO, MVar, laziness and
concurrency.

The maybe most similar work are the two mechanized proofs that runST :: (Forall s. ST s a) —> a is
safe [Jacobs et al. 2022; Timany et al. 2018]: The contextual equivalences of the pure language still
hold when extending the language with runST, and thus the extension is fully abstract. However,
their languages are not call-by-need (which is crucial in our case) and not concurrent (which is
also relevant), and as discussed in the previous section, our extension preserves some, but not all
contextual equivalences.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 211. Publication date: August 2023.

More Fixpoints! (Functional Pearl) 211:15

5.4 Denotational Semantics

We know how to describe pure functional programming languages elegantly using denotational
semantics and fixed-point theorems. Domain theory and fixed-point theorems also underpin the
data structures presented here. We would therefore expect that our extended language has a nice
denotational semantics as well, but it does not seem to be straight forward, for two reasons:

e As discussed in Section 5.1, sharing now affects termination. How can we give a denotational
semantics so that it distinguishes tied knots (let xs = 1 : xs in xs) from general recursion
(let Fx=x:Fxinf1)?

e We use let to describe both recursion in Haskell’s domain, e.g. for recursive functions and
knot-tied data structures, as well as for the equations to be solved by our library. This
entanglement of two seemingly unrelated partial orders so far resisted disentanglement.

Hackett and Hutton [2019] give a denotational semantics with a cost model of lazy evaluation, and
in their semantic domain knot-tying can be recognized. We are currently working on a denotational
semantics for our library based on that and welcome interested readers to ask us about it.

6 RELATED WORK

The present work draws inspiration from and connects to various directions.

6.1 Fixpoint Solvers and Propagation Networks

Section 4.2 describes the “imperative core” of our library: An underlying library that allows us to
declare the cells of a possibly cyclic graph of values with their relations and finds the solution. For
the purposes of this paper we can assume this to be a black box, to avoid getting distracted by
questions related to the theory and implementation of this black box, as tempting as these questions
may be.

All the work in making fixpoint solvers and data-flow analyses efficient is relevant here [Kam
and Ullman 1976; Kildall 1973]. An important difference to typical data-flow analyses is that in order
to stay pure, we cannot afford to make conservative approximations while solving the equations
(e.g. aborting with a safe guess after a certain number of iterations).

Also related is the concept of propagator network [Sussman and Radul 2009], although our
use-case is a bit simpler, as information only flows in one direction along an edge, and once we
queried the value of one vertex, we never add more constraints that would afterwards influence
that vertex and invalidate the value we read.

6.2 LVars

Kuper and Newton [2013] introduce LVars, concurrent data structures that can be read from and
written to in parallel, but thanks to restrictions on writes (monotonically increasing) and reads
(“threshold reads”), a deterministic result is guaranteed in the end. Therefore, the concurrent,
effectful, monadic code can be executed in a pure context, via runPar :: (forall s. Par Det s a) —> a.

There are some similarities to our work (uses unsafePerformlO under the hood, relies on mono-
tonicity to guarantee a unique result), but also significant differences: LVars come with a monadic
interface while we avoid monads; our library allows to pull out many pure values, while runPar
discharges the Par monad only once; with LVar one can do more than just solve equations. It thus
does not seem to be possible to implement our library using just their public, safe interface.

6.3 Shallow Graph Embeddings and Observable Sharing

Claessen and Sands [1999] made sharing observable in Haskell, so that they can very elegantly
describe logic circuits in Haskell. They extend pure Haskell with operations that one might dismiss

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 211. Publication date: August 2023.

211:16 Joachim Breitner

as impure (observable object identity),. They point out that this breaks some equational equivalences
of Haskell, but argue that this may be acceptable, given that some of these equivalences are not
benign code transformations to begin with, as they can duplicate arbitrary amount of work anyways
— a line of reasoning you may recognize from Section 5.1. Gill [2009] proposed a variant with a
more focused primitive reifyGraph that turns a knot-tied value into an explicit graph data structure.

Both extensions to Haskell are bolder: They break more laws (even referential transparency!)
in order to make the structure of the embedded graph observable, as necessary for their poster
use-case. With our library, you cannot observe the structure of the graph; you only get your hands
on the unique solution to the equations. This means it is unsuitable for some use-cases, but also
less disruptive.

We could have implemented our library on top of their observable sharing mechanism, reifying
the graph of values as a data structure with explicitly named vertices. We chose to do it differently:
Haskell’s laziness and the guarantee that a binding let x = unsafePerformlO act is executed at most
once makes sharing of the value x observable. For each shared value we can thus create a unique
mutable cell, and let them refer to each other. The graph is never actually turned into a (Haskell-
level) data structure and the cells are not (explicitly) numbered or named; instead the graph is
represented by the pointers on the heap, cells are implicitly identified by their object identity, and
the bookkeeping data for each cell is stored within its mutable fields. One advantage is that reading
of values at multiple nodes of the (implicit) graph will share the solver’s work, instead of re-reifying
the graph and re-solving it.

Looking beyond Haskell we want to point out CoCaml [Jeannin et al. 2017], which allows the
OCaml programmer to observe the structure of knot-tied (coinductive) data, and even process such
data while preserving the sharing (so that a map over a cyclic list can return a cyclic list).

6.4 Logic Programming

For the kind of use-cases presented here, logic programming languages like Prolog and Datalog are
certainly on their home turf. What we bring to the table is the seamless integration into an existing
purely functional language.

6.4.1 Datafun. Particularly close to our work, and straddling the functional and logic programming
paradigms, is the Datafun language [Arntzenius and Krishnaswami 2016], a pure and total functional
programming language generalizing Datalog, which can declaratively express and compute fixed
points of monotone maps on semilattices — exactly what we are trying to do. Since they tailor their
language around this idea, their type system can recognize monotonic function definitions

Datafun comes with a denotational semantics, which we still struggle with. In their case it helped
that as a total language, they do not have to worry about arbitrary recursion and non-termination,
avoiding the complications mentioned in Section 5.4.

Monotonicity is crucial for the existence and uniqueness of a solution (Section 2.5). We ensure
monotonicity by simply restricting the interface (Figure 2) to only expose monotonic functions. This
works, but is rather limiting when it comes to higher-order functions. Assume we would want to
support recursively-definable finite maps as well. A natural order on finite maps is the point-wise or-
dering. But with that ordering, higher-order operations like map :: (a —> b) —> RMap k a -> RMap k b
are only monotonic if their argument is monotonic, and Haskell’s type system does not allow us to
express that constraint. Without these higher-order functions, however, the map API would be
quite impoverished, so we do not support finite maps with the point-wise ordering in our library.®

3You might notice the Data.Recursive.Map module in the rec-def package. This implements maps with the discrete ordering
on values, where all higher order function arguments are vacuously monotonic, thus avoiding this issue.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 211. Publication date: August 2023.

More Fixpoints! (Functional Pearl) 211:17

Datafun’s type system has a separate function arrow -5 to characterize monotonic functions, and
thus supports this use-case quite well.

6.4.2 Hatafun. Could we have such a function arrow < in Haskell? This idea is explored by Zhang
[2020] with Hatafun, an experiment embedding Datafun’s type system into Haskell. It defines
a newtype a -+> b = MFun (a —> b) for monotonic functions and uses type-level computation and
Higher Order Abstract Syntax in the style of Polakow [2015] to allow safe and flexible definitions
of such functions.

For example, the reflexive transitive closure from the introduction can be calculated using
Hatafun as follows (code provided by Yihong Zhang):

type Graph = M.Map Int (S.Set Int)

rTrans :: Graph —> Graph
rTrans = eval $ lam $ \edge_graph —>
let reaches = mlam $ \graph —>
edge_graph ‘lub® mapWithKey (
lam $ \k —=> lam $ \vs —> insert “app" k "‘mapp’ mbind vs (lam $ \v' —> graph ! V')
) graph
in fix reaches

We see that some functions are defined using explicit combinators for monotonic functions
(mlam, mapp, fix) instead of using Haskell’s syntax (\, juxtaposition, let).

Especially the need to thread recursion through a single fix is significant here: The problem has
to be described as a single equation in a suitable partial order. So here, the map of reachable nodes
is repeatedly recalculated as a whole, until a fixed-point is found.

Contrast that to our code, where only a single map exists, and serves to declare multiple equations
in the partial order of sets, using knot-tying. The fixed-point iteration then happens on these sets,
which can be significantly more efficient.

The main aim of Hatafun is to explore an embedding of datafun’s type system for monotonic
functions in Haskell, using the HOAS approach, and our library could well benefit from that
approach. This is rather orthogonal to our idea of declaring mutually recursive equations via
Haskell’s let, which might be useful for Hatafun, too.

Appendix D.1 contains an Hatafun implementation of our case study.

6.5 Data Flow Libraries in Haskell

Graf [2021] also observes that compiler analyses implemented in pure functional languages tend to
mix specifying the data flow equations with the actual solving, and that ideally solving ought to
be independent of the syntactic nesting structure of the input program, echoing our concerns in
Section 3.4. His datafix library explores a monadic solution and can handle our case study, but only
with significant refactoring:

e The Exp data type needs to be re-phrased using open recursion:

data ExpF r = VarF V | LamF V r | AppF r r | ThrowF | CatchF r | LetRecF [(V,)] r
data Exp = Fix (ExpF Exp)

o A generic traversal for this data type needs to be written. It can then be used for all analyses
and passes over Exp.

o Then our actual analysis/transformation pass can be implemented. The snippet corresponding
to Section 3.3 would be

transferFunctionAlg :: TransferAlgebra RWE

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 211. Publication date: August 2023.

211:18 Joachim Breitner

transferFunctionAlg _ _ env e = case e of

CatchF e —> do
MKRWE can_throw e <-e
let new_e | RTrue <— can_throw = Fix $ CatchF e
| otherwise =e
pure (MKRWE RFalse new_e)

where RWE is a tuple of a Boolean and an expression.

The complete code, provided by Sebastian Graf, is listed in Appendix D.2.

Compared to our library, datafix provides more flexibility: It is not restricted to equations and
solving strategies that lead to a unique solution, independent of the evaluation strategy, but is at
liberty to pragmatically make conservative approximations. Also, the non-recursive description
of passes based on an openly-recursive data type may enable the fusion of consecutive compiler
passes.

However, it requires significant refactoring (changing the expression data type, for example),
and one has to depart from the arguably elegant purely functional style that we started with.

7 CONCLUSION AND FURTHER WORK

We saw that we can extend Haskell with the ability to solve recursive equations involving Booleans
and sets, that this extension can be implemented as a library, and that it — arguably — preserves the
nice properties of the language.

Of course there is more to be done. On the practical side there are more data types and operations
to be included in the library (natural numbers in various ordering, maps). On the theoretical side, a
more rigorous, formal approach to the question of whether this is actually safe and pure is worth
pursuing, as is finding a denotational description of what the library does.

ACKNOWLEDGMENTS

This paper would be worse without the constructive feedback from Sebastian Graf, Claudio Russo,
Andreas Lochbihler, Peter Thiemann as well as the anonymous reviewers. We also thank Yihong
Zhang and Sebastian Graf for the code snippets in the related work section.

A THE REFLEXIVE TRANSITIVE CLOSURE, PEDESTRIAN-STYLE

In the introduction we mentioned that without the data structure presented in this paper, a program-
mer likely has to write their reflexive-transitive-closure code with an explicit loop (a tail-recursive
go function), explicitly keeping track of seen vertices to avoid running in circles:

rTrans3 :: Graph —> Graph
rTrans3 g = M.fromList [(v, S.toList (go S.empty [v])) | v <= M.keys g]
where
go :: S.Set Int —> [Int] —> S.Set Int
go seen [] = seen
go seen (vivs) | v 'S.member’ seen = go seen vs
| otherwise = go (S.insert v seen) (g M.! v ++ vs)

B FUSED PROGRAM ANALYSIS AND TRANSFORMATION

In Section 3.3 we pointed out that one advantage of our library is that it not only allows defining
mutually recursive equations, but (lazily) query that graph as we go. In our example, we rewrite
Catch e to e when the analysis proves that e cannot throw. The full code of the analysis and

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 211. Publication date: August 2023.

More Fixpoints! (Functional Pearl) 211:19

transformation pass is a bit unwieldy, as it returns both the analysis result and the modified code,
so we put it into this appendix.

removeCatch :: Exp —> Exp
removeCatch e = snd (go M.empty e)

where
go :: M.Map V RBool —> Exp —> (RBool, Exp)
go env (Var v) = (env M.! v, Var v)
go env Throw = (RB.true, Throw)
go env (Catch e) = (RB.false, new_eg)
where
(can_throw, e") =goenve
new_e | RB.get can_throw = Catch €'
| otherwise =e'
go env (Lam v e) = (can_throw, Lam v e')
where
env' = M.insert v RB.false env
(can_throw, e') =goenv'e
go env (App el e2) = (can_throw1 RB.|| can_throw2, App e1' e2')
where
(can_throw1, e1') = go env e1
(can_throw2, e2') = go env e2
go env (Let v el e2) = (can_throw2, Let v e1' e2')
where
(can_throw1, e1') = go env e1
env_bind = M.singleton v can_throw1
env' = M.union env_bind env

(can_throw2, e2') = go env' e2

go env (LetRec binds e) = (can_throw, LetRec binds' e')

where
(env_bind, binds') = unzip (map (goBind env') binds)
env' = M.union (M.fromList env_bind) env
(can_throw, e') =goenv'e

goBind :: M.Map V RBool —> (V,Exp) —> ((V,RBool), (V,Exp))
goBind env (v,e) = ((v, RB.id can_throw), (v, e'))
where
(can_throw, e') =goenve

C THE IMPERATIVE CORE’S IMPLEMENTATION

In Section 4.2 we assumed a module exporting the following API:

data Cell a

newCell :: 10 (Cell a)
defCellinsert :: Ord a => Cella—>a > Cella —> 10 ()
getCell i Cell a —> 10 (Set a)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 211. Publication date: August 2023.

211:20 Joachim Breitner

A simple implementation could look like this:
module Cell (Cell, newCell, defCellinsert, getCell) where

import Control.Monad (join, unless)
import Control.Concurrent.MVar
import qualified Data.Set as S

data Cell a = MkCell { val :: MVar (S.Set a), onChange :: MVar (10 ()) }

newCell :: 10 (Cell a)

newCell = do
m <— newMVar S.empty
notify <— newMVar (pure ())
pure $ MkCell m notify

getCell :: Cell a —> 10 (S.Set a)
getCell (MkCell m _) = readMVar m

setCell : Eq a => Cell a —> S.Set a —> 10 ()
setCell (MkCell m notify) x = do

old <- swapMVar m x

unless (old == x) $ join (readMVar notify)

watchCell :: Cella—> 10 () = 10 ()
watchCell (MkCell m notify) act = modifyMVar_ notify (\a —> pure (act >> a))

defCellinsert :: Ord a => Cella—>a —> Cella = 10 ()
defCelllnsert c1 x c2 = watchCell c2 update >> update
where
update = do
s <— getCell c2
setCell c1 (S.insert x s)

D THE CASE STUDY IN RELATED WORK

To complete our comparison with related work, in particular Hatafun (Section 6.4.2) and datafix
(Section 6.5), we show how the case study from Section 3 can be solved with these libraries. This is
not an explanation of these libraries, but we hope that the listings can still give a useful impression

The implementations were provided by the authors of the respective libraries, for which we are
grateful. The following listings have been modified from their original version. They have been
formatted to fit this paper.

D.1 Program Analysis Using Hatafun

Yihong Zhang ported the code from Section 3 as follows:
type V = String
type Env = M.Map V Bool

data Exp = Var V | Lam V Exp | App Exp Exp | Throw | Catch Exp
| Let V Exp Exp | LetRec (M.Map V Exp) Exp

canThrow :: Exp —> Bool
canThrow e = eval (go “mapp’ lift M.empty “app" lift e)

go :: Defn (M.Map V Bool -+> (Exp —> Bool))
go = mlam $ \env —> lam $ \x —> case unlift x of

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 211. Publication date: August 2023.

More Fixpoints! (Functional Pearl) 211:21

Var v —> when (mapMember “app’ lift v "'mapp’ env)
(env ! lift v)
Throw —> tt
Catch e — ff
Lam v e —> go ‘mapp" lub (lift $ M.singleton v False) env “app" lift e
App e1 e2 —> (go "'mapp” env “app’ lift e1) "lub’ (go ‘mapp" env “app" lift e2)
Let vUnsafe e1Unsafe e2Unsafe —> go ‘mapp’ env' “app’ e2

where
v i Defn V
v = lift vUnsafe
el :: Defn Exp
el = lift e1Unsafe
e2 :: Defn Exp

e2 = lift e2Unsafe

env_bind = mapSingleton “app’ v ‘'mapp" (go ‘'mapp" env ‘app" e1)
env' = lub env_bind env

LetRec bindsUnsafe eUnsafe —> go "mapp’ env' ‘app’ e

where

e :: Defn Exp
e = lift eUnsafe
binds :: Defn (M.Map V Exp)
binds = lift bindsUnsafe

step :: Defn (Env -+> Env)

step = mlam $ \env —>
let env_bind = mapWithKey (lam $ \v —> lam $ \e —> go "'mapp’ env "app" e) binds
in lub env env_bind

env' = fix step

He explained that the use of unlift on the expression to be analyzed is unsafe, but ok here, because
the expression is invariant here; correctly tracking the monotonicity of user-defined data types like
Exp is possible, but requires auxiliary safe API definitions, eventually may generated generically.

More relevant is that, similar as in Section 6.4.2, this does not set up a system of mutually recursive
equations of boolean values, with one variable per AST node, but at each LetRec it declares and
solves a single equation for the environment as a whole. With nested LetRecs, this can blow up the
complexity, as explained in Section 3.4, which brings us to the next alternative worth considering.

D.2 Program Analysis Using Datafix

The datafix library mentioned in Section 6.5 was created in particular due to the desire to free the
equations to be solved from the syntactic structure of the input program. Sebastian Graf shows
how the case study can be implemented using datafix, and went straight for the harder problem of
a combined analysis/transformation pass, corresponding to Appendix B.

import Datafix

import Data.Proxy (Proxy (..))

import qualified Data.Map as M

import Datafix.Utils.SemiLattice (JoinSemiLattice (..), BoundedJoinSemilLattice (..))

type V = String
data ExpF r = VarF V| LamF V r | AppF r r | ThrowF | CatchF r | LetRecF [(V,)] r

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 211. Publication date: August 2023.

211:22 Joachim Breitner

data Exp = Fix (ExpF Exp)

data RBool = RFalse | RTrue deriving (Eq, Ord, Show)
instance JoinSemiLattice RBool where
(\/) = max
instance BoundedJoinSemiLattice RBool where
bottom = RFalse

data RWE = MKRWE !RBool Exp
instance Eq RWE where
MKRWE b1 _ == MKRWE b2 _ = b1 == b2
instance JoinSemilLattice RWE where
MKRWE b1 _\/ MKRWE b2 e2 = MKRWE (b1 \/ b2) e2
instance BoundedJoinSemilLattice RWE where
bottom = MKRWE bottom undefined

type TransferAlgebra lattice = Forall m. Monad m =>
Proxy m —> Proxy lattice —> M.Map V (m lattice) —> ExpF (m lattice) —> m lattice

type TF m = m (Domain m)

buildDenotation :: forall domain. Eq domain => IsBase domain ~ True =>
TransferAlgebra domain —> Exp —> Denotation domain domain
buildDenotation alg exp = go
where
go :: Forall m. MonadDatafix m => domain ~ Domain (DepM m) => m (TF (DepM m))
go = buildDenotation' alg exp

buildDenotation' :: Forall domain m. MonadDatafix m => domain ~ Domain (DepM m) =>
Eq domain => IsBase domain ~ True => TransferAlgebra domain —> Exp —> m (TF (DepM m))
buildDenotation' alg' = buildExpr M.empty
where
alg = alg' (Proxy :: Proxy (DepM m)) (Proxy :: Proxy domain)
buildExpr :: M.Map V (TF (DepM m)) —> Exp —> m (TF (DepM m))
buildExpr !env (Fix expr) =
case expr of
VarF id_ —> pure (alg env (VarF id_))
LamF id_ body —> do
transferBody <— buildExpr (M.insert id_ (pure bottom) env) body
pure (alg env (LamF id_ transferBody))
AppF fa —> do
transferF <- buildExpr env f
transferA <- buildExpr env a
pure (alg env (AppF transferF transferA))
ThrowF —> pure (alg env ThrowF)
CatchF e —> do
transferE <- buildExpr env e
pure (alg env (CatchF transferE))
LetRecF bind body —> do
(env', transferredBind) <— datafixBindingGroup env bind
transferBody <— buildExpr env' body
pure (alg env (LetRecF transferredBind transferBody))

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 211. Publication date: August 2023.

More Fixpoints! (Functional Pearl) 211:23

datafixBindingGroup !env binders = case binders of
[1 —> pure (env, [])
((id_, rhs):binders') —>
datafixEq $ \self —> do

let env' = M.insert id_ self env
(env", transferredBind) <- datafixBindingGroup env' binders
transferRHS <— buildExpr env" rhs
pure ((env", (id_, self):transferredBind), transferRHS)

transferFunctionAlg :: TransferAlgebra RWE
transferFunctionAlg _ _ env e = case e of
VarF id_ —> do
MKRWE throws _ <— env M.! id_
pure (MKRWE throws (Fix $ VarF id_))
ThrowF —> pure (MKkRWE RTrue (Fix $ ThrowF))
CatchF e —> do
MKRWE can_throw e <- e
let new_e | RTrue <— can_throw = Fix $ CatchF e
| otherwise =e
pure (MkRWE RFalse new_e)
LamF id_ body —> do
MKRWE can_throw body <- body
pure (MKRWE can_throw (Fix $ LamF id_ body))
AppF fa —> do
MKRWE throw_f f <— f
MKRWE throw_a a <-a
let RFalse ||| b=Db
RTrue ||| _ = RTrue
pure (MKRWE (throw_Ff ||| throw_a) (Fix $ AppF f a))
LetRecF bind body —> do
MKRWE can_throw body <- body
let extract_rhs (v,me) = do
MKRWE _can_throw e <— me
pure (v, e)
bind' <- mapM extract_rhs bind
pure (MKRWE can_throw (Fix $ LetRecF bind' body))

removeCatch :: Exp —> Exp

removeCatch e =
let MKRWE _ e' = evalDenotation @RWE (buildDenotation transferFunctionAlg e) NeverAbort

ine'

See Section 6.5 for a discussion of this approach.

REFERENCES
Stephen Adams. 1992. Implementing sets efficiently in a functional language,. Research Report CSTR 92-10. University of

Southampton.
Michael Arntzenius and Neelakantan R. Krishnaswami. 2016. Datafun: a functional Datalog. In Proceedings of the 21st ACM

SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016, Jacques
Garrigue, Gabriele Keller, and Eijiro Sumii (Eds.). ACM, 214-227. https:/doi.org/10.1145/2951913.2951948
Joachim Breitner. 2023. Reproduction package for Functional Pearl "More Fixpoints!”. https:/doi.org/10.1145/3580399

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 211. Publication date: August 2023.

https://doi.org/10.1145/2951913.2951948
https://doi.org/10.1145/3580399

211:24 Joachim Breitner

Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for random testing of Haskell programs. In Proceedings
of the Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP 00), Montreal, Canada, September
18-21, 2000, Martin Odersky and Philip Wadler (Eds.). ACM, 268-279. https:/doi.org/10.1145/351240.351266

Koen Claessen and David Sands. 1999. Observable Sharing for Functional Circuit Description. In Advances in Computing
Science - ASIAN’99, 5th Asian Computing Science Conference, Phuket, Thailand, December 10-12, 1999, Proceedings (Lecture
Notes in Computer Science, Vol. 1742), P. S. Thiagarajan and Roland H. C. Yap (Eds.). Springer, 62-73. https:/doi.org/
10.1007/3-540-46674-6_7

Andy Gill. 2009. Type-safe observable sharing in Haskell. In Proceedings of the 2nd ACM SIGPLAN Symposium on Haskell,
Haskell 2009, Edinburgh, Scotland, UK, 3 September 2009, Stephanie Weirich (Ed.). ACM, 117-128. https:/doi.org/10.1145/
1596638.1596653

Sebastian Graf. 2021. datafix: Fixing data-flow problems. https:/github.com/sgraf812/datafix revision 4d5239c.

Jennifer Hackett and Graham Hutton. 2019. Call-by-need is clairvoyant call-by-value. Proc. ACM Program. Lang. 3, ICFP
(2019), 114:1-114:23. https:/doi.org/10.1145/3341718

Martin Hofmann, Aleksandr Karbyshev, and Helmut Seidl. 2010. What Is a Pure Functional?. In Automata, Languages and
Programming, 37th International Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings, Part I (Lecture
Notes in Computer Science, Vol. 6199), Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide,
and Paul G. Spirakis (Eds.). Springer, 199-210. https:/doi.org/10.1007/978-3-642-14162-1_17

Koen Jacobs, Dominique Devriese, and Amin Timany. 2022. Purity of an ST monad: full abstraction by semantically typed
back-translation. Proc. ACM Program. Lang. 6, OOPSLA1 (2022), 1-27. https:/doi.org/10.1145/3527326

Jean-Baptiste Jeannin, Dexter Kozen, and Alexandra Silva. 2017. CoCaml: Functional Programming with Regular Coinductive
Types. Fundam. Informaticae 150, 3-4 (2017), 347-377. https:/doi.org/10.3233/FI-2017-1473

John B. Kam and Jeffrey D. Ullman. 1976. Global Data Flow Analysis and Iterative Algorithms. J. ACM 23, 1 (1976), 158-171.
https:/doi.org/10.1145/321921.321938

Gary A. Kildall. 1973. A Unified Approach to Global Program Optimization. In Conference Record of the ACM Symposium on
Principles of Programming Languages, Boston, Massachusetts, USA, October 1973, Patrick C. Fischer and Jeffrey D. Ullman
(Eds.). ACM Press, 194-206. https:/doi.org/10.1145/512927.512945

Lindsey Kuper and Ryan R. Newton. 2013. LVars: lattice-based data structures for deterministic parallelism. In Proceedings
of the 2nd ACM SIGPLAN workshop on Functional high-performance computing, Boston, MA, USA, FHPC@ICFP 2013,
September 25-27, 2013, Clemens Grelck, Fritz Henglein, Umut A. Acar, and Jost Berthold (Eds.). ACM, 71-84. https:/
doi.org/10.1145/2502323.2502326

John Longley. 1999. When is a Functional Program Not a Functional Program?. In Proceedings of the fourth ACM SIGPLAN
International Conference on Functional Programming (ICFP °99), Paris, France, September 27-29, 1999, Didier Rémy and
Peter Lee (Eds.). ACM, 1-7. https:/doi.org/10.1145/317636.317775

Jurg Nievergelt and Edward M. Reingold. 1972. Binary Search Trees of Bounded Balance. In Proceedings of the 4th Annual
ACM Symposium on Theory of Computing, May 1-3, 1972, Denver, Colorado, USA, Patrick C. Fischer, H. Paul Zeiger,
Jeffrey D. Ullman, and Arnold L. Rosenberg (Eds.). ACM, 137-142. https:/doi.org/10.1145/800152.804906

Simon L. Peyton Jones, Andrew D. Gordon, and Sigbjern Finne. 1996. Concurrent Haskell. In Conference Record of POPL’9:
The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Papers Presented at the Symposium,
St. Petersburg Beach, Florida, USA, January 21-24, 1996, Hans-Juergen Boehm and Guy L. Steele Jr. (Eds.). ACM Press,
295-308. https:/doi.org/10.1145/237721.237794

Simon L. Peyton Jones and Simon Marlow. 2002. Secrets of the Glasgow Haskell Compiler inliner. . Funct. Program. 12, 4&5
(2002), 393-433. https:/doi.org/10.1017/S0956796802004331

Simon L. Peyton Jones, Simon Marlow, and Conal Elliott. 1999. Stretching the Storage Manager: Weak Pointers and
Stable Names in Haskell. In Implementation of Functional Languages, 11th International Workshop, IFL’99, Lochem, The
Netherlands, September 7-10, 1999, Selected Papers (Lecture Notes in Computer Science, Vol. 1868), Pieter W. M. Koopman
and Chris Clack (Eds.). Springer, 37-58. https:/doi.org/10.1007/10722298_3

Jeff Polakow. 2015. Embedding a full linear Lambda calculus in Haskell. In Proceedings of the 8th ACM SIGPLAN Symposium
on Haskell, Haskell 2015, Vancouver, BC, Canada, September 3-4, 2015, Ben Lippmeier (Ed.). ACM, 177-188. https:/doi.org/
10.1145/2804302.2804309

Francois Pottier. 2009. Functional Pearl: Lazy least fixed points in ML. http:/cambium.inria.fr/~fpottier/publis/fpottier-fix.pdf
(unpublished).

Amr Sabry. 1998. What is a Purely Functional Language? J. Funct. Program. 8, 1 (1998), 1-22. https:/doi.org/10.1017/
50956796897002943

Ilya Sergey, Dimitrios Vytiniotis, Simon L. Peyton Jones, and Joachim Breitner. 2017. Modular, higher order cardinality
analysis in theory and practice. J. Funct. Program. 27 (2017), e11. https:/doi.org/10.1017/S0956796817000016

Gerald Jay Sussman and Alexey Radul. 2009. The Art of the Propagator. Technical Report MIT/CSAIL Technical Report MIT-
CSAIL-TR-2009-002. Massachusetts Institute of Technology, Cambridge, MA. https:/dspace.mit.edu/handle/1721.1/44215

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 211. Publication date: August 2023.

https://doi.org/10.1145/351240.351266
https://doi.org/10.1007/3-540-46674-6_7
https://doi.org/10.1007/3-540-46674-6_7
https://doi.org/10.1145/1596638.1596653
https://doi.org/10.1145/1596638.1596653
https://github.com/sgraf812/datafix
https://doi.org/10.1145/3341718
https://doi.org/10.1007/978-3-642-14162-1_17
https://doi.org/10.1145/3527326
https://doi.org/10.3233/FI-2017-1473
https://doi.org/10.1145/321921.321938
https://doi.org/10.1145/512927.512945
https://doi.org/10.1145/2502323.2502326
https://doi.org/10.1145/2502323.2502326
https://doi.org/10.1145/317636.317775
https://doi.org/10.1145/800152.804906
https://doi.org/10.1145/237721.237794
https://doi.org/10.1017/S0956796802004331
https://doi.org/10.1007/10722298_3
https://doi.org/10.1145/2804302.2804309
https://doi.org/10.1145/2804302.2804309
http://cambium.inria.fr/~fpottier/publis/fpottier-fix.pdf
https://doi.org/10.1017/s0956796897002943
https://doi.org/10.1017/s0956796897002943
https://doi.org/10.1017/S0956796817000016
https://dspace.mit.edu/handle/1721.1/44215

More Fixpoints! (Functional Pearl) 211:25

Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars Birkedal. 2018. A logical relation for monadic encapsulation
of state: proving contextual equivalences in the presence of runST. Proc. ACM Program. Lang. 2, POPL (2018), 64:1-64:28.
https:/doi.org/10.1145/3158152

Michael Walker and Colin Runciman. 2015. Déja Fu: a concurrency testing library for Haskell. In Proceedings of the 8th
ACM SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver, BC, Canada, September 3-4, 2015, Ben Lippmeier (Ed.).
ACM, 141-152. https:/doi.org/10.1145/2804302.2804306

Yihong Zhang. 2020. Hatafun. https:/github.com/yihozhang/Hatafun/ revision c372b81.

Received 2023-03-01; accepted 2023-06-27

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 211. Publication date: August 2023.

https://doi.org/10.1145/3158152
https://doi.org/10.1145/2804302.2804306
https://github.com/yihozhang/Hatafun/

	Abstract
	1 Introduction
	1.1 Tying the Knot with Graphs
	1.2 It Works, Until It Doesn't
	1.3 We Need Better Sets!
	1.4 Contributions

	2 Exploration
	2.1 Just an Isomorphic Copy?
	2.2 Recursion!
	2.3 Fixpoints
	2.4 More Than Sets
	2.5 Monotonicity
	2.6 Termination
	2.7 The Black Hole

	3 Case study: a program analysis
	3.1 First Without Recursion
	3.2 Avoiding the Black Hole
	3.3 Using All the Values
	3.4 Alternative Approaches

	4 Under the hood
	4.1 A Naive Implementation
	4.2 An Imperative Core
	4.3 The Pure Wrapping
	4.4 Less Naively, Please

	5 Caveats
	5.1 Contextual Equivalences and Lambda Lifting
	5.2 Equivalence of Sets
	5.3 Unproven Claims
	5.4 Denotational Semantics

	6 Related work
	6.1 Fixpoint Solvers and Propagation Networks
	6.2 LVars
	6.3 Shallow Graph Embeddings and Observable Sharing
	6.4 Logic Programming
	6.5 Data Flow Libraries in Haskell

	7 Conclusion and further work
	Acknowledgments
	A The reflexive transitive closure, pedestrian-style
	B Fused program analysis and transformation
	C The imperative core's implementation
	D The case study in related work
	D.1 Program Analysis Using Hatafun
	D.2 Program Analysis Using Datafix

	References

