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Proofs for Vizing’s Theorem tend to be unwieldy unless presented in form a
constructive algorithm with a proof of its correctness and termination. We imple-
mented such an algorithm in the modelling formalism Event-B and performed a
machine-checked correctness proof with the Rodin tool.
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2. Event-B and Rodin
1. Vizing's Theorem

In this project, we proved Vizing’s Theorem:

For a finite undirected graph without autoloops and without multiple edges, at
any vertex of which no more than N edges meet, N + 1 colours suffice for an edge
coloring such that edges incident on the same vertex are of different color.

This theorem, although proved earlier as well, was considered by Rao and Dijkstra in 1990,
who gave an easier to understand proof by describing a constructive algorithm that colors
the edges correctly, along with a proof that this algorithm terminates and is correct [RD90].
This approach was simplified and streamlined by Misra and Gries [MG90]. They also introduce
names such as “fan” and “cd-path” for concepts occurring in the constructions. Their algorithm
consists of consecutively executing these steps until all edges are colored:

Let X +— Y be an uncolored edge.

Let (Y ...l) be a maximal fan.

Let ¢ be a color that is free on X, and d a color that is free on .

Invert the cd-path.

Choose w such that (Y ...w) is a prefix of the fan (Y ...l) and d is free on w.
Rotate the fan (Y ...w) and color the edge X +— w with the color d.

A fan is a list of distinct neighbours of X, starting at Y, such that the edge X — fan(k + 1)
is coloured and this color is free on the node fan(k). The colors on such a fan can be rotated,
e.g. moved from the edge X +— fan(k+1) to X — fan(k) without invalidating the coloring.

The cd-path is the largest sequence of nodes starting at node X and following the edges colored
cor d. The inversion of such a path changes the colors on these edges from c to d and vica-versa.
This is also a transformation that preserves validness of a coloring.

The proof given in the Misra and Gries paper establishes that the operations above indeed
preserve the validness of the coloring. Furthermore, they prove that after the inversion of the
cd-path, a prefix of the path with the property given in the algorithm exists. This is done by
case analysis: If no fan edge has color d, the cd-path was empty to begin with. If there was a
fan edge with color d, then d is free on the preceding vertex, say v, on the fan. Either v is in
the cd-path, then the original fan suffices. Or v is no in the cd-path, in which case the prefix
(Y ...v) is a suitable fan.

In any case, the inversion of the cd-paths frees the color d on X, which is preserved by rotation.
After rotation, d is free on X and the last edge of the fan w, so this edge can be colored.

For more details on the proof, refer to the implementation below or to the original paper.

2. Event-B and Rodin

Event-B is a formalism conceived by Jean-Raymond Abrial to model and verify systems. The
main characteristic of Event-B is the concept of refinement: An abstract specification is refined
by a slightly more concrete model, which is proved correct with regard to the specification.
Then this model is again refined by something more concrete, and again the correctness of the



new model is proved, but not against the original specification, but only against the previous
model. This is iterated until the final, concrete implementation is reached. By transitivity of
implication, the final model is known to correctly implement the specification.

Another important characteristic of Event-B is the use of events, which consist of logical
predicates as guards, deciding when an event may occur, and (possibly non-deterministic)
actions, modifying the state of the model. The expected behaviour of the model is formalized
by predicates called invariants, which have to be provably preserved by every event.

Rodin is an Eclipse based platform to perform modelling within this framework. It allows to
define the models, calculates the proof obligations and either solves them automatically using
external theorem provers or gives the user to manually perform the proof. It is extensible
with plugins, for example to generate WTEX documents describing the models (as used in this
paper) or to generate additional proof obligations such as the absence of deadlocks.

3. Proof validation

A Rodin model is an unusual way of presenting a proof for a mathematical statement. So the
question arises whether it is a valid one? It is sound given the following assumptions are made
or independently verified.

e Rodin is sound, e.g. it would reject any invalid automatic or manual proof. This is
actually a strong assumption. Previous versions of Rodin have contained soundness
errord’land the Release Noteg?| for new versions contain a disclaimer:

However, despite the total commitment of our teams to insure the soundness
of the platform, some unexpected and unknown soundness issues could remain.

In the case of Vizing’s Theorem, the result is already well established. If this were some
new result, relying only on the Rodin platform for verifying the proof obligations would
not constitute a rigorous proof.

e Rodin correctly generates all proof obligations required to ensure that an executable al-
gorithm in the final refinement indeed fulfills the specification given in he first refinement.
Given that this is the core idea of the Event-B formalism, its theory and implementation
is likely to be thoroughly reviewed.

e The formalisation of the graph and the guard of the finish event in the first refinement are
faithful representations of the assumptions and conclusions of the theorem to be proved.

e Every event introduced in later refinements is, at one stage, shown to be convergent.

4. Refinement strategy

Event-B is event based, so imperative algorithm cannot be reasoned about directly. The usual
approach here is to have one particular event, here called finish, which indicates the end of the

"http://sourceforge.net/tracker/?func=detail&aid=3158594&group_id=108850&atid=651669
2http ://wiki.event-b.org/index.php/Rodin_Platform_2.1.1_Release_Notes
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4. Refinement strategy

Model POs auto. manual
VizingTheorem 305 250 55
Input 2 2 0
m00 Spec 5 5 0
m01 Colorops 15 8 7
m02 FixX 18 13 5
m03 FixY 18 14 4
m04 Fan 65 54 11
mO05 CDpath as path 12 12 0
m06 CDpath building 80 64 16
m07 Event ordering 50 47 3
m08 Conv Fan Build 13 9 4
m09 Conv CDpath 11 10 1
m10 Conv Fan Color 9 6 3
mll Conv Stages 6 6 0
m12 Deadlock Freedom 1 0 1

Table 1: Proof obligation statistics

algorithm. In the very first model, the guard of this event is set to the desired result of the
algorithm. In further refinements new events are added as required to reach this goal. Each
of these events is eventually marked as convergent, thus ensuring that the program does not
run forever. If additionally deadlock freedom is proved for the very last model, this implies
that eventually, the finish event will be executed. At this point, we know that the program is
correct and terminates.

Our construction of the coloring algorithm consists of a context, which defines the constants of
the problem (the vertexes, the graph and the available colors) together with our assumptions
about them (represented as axioms of the system). An initial model gives the abstract and
non-executable specification of our problem, followed by 12 refinements. The last five of these
do not modify the model; their purpose is to house the convergence and deadlock freedom
proofs.

The following list gives a quick overview of the refinements and lists when each event occurs
the first time. Table [I] gives an overview of the number of proof obligations in each refinement,
and how many of them had to be done manually.

e Input: Defines the input of the problem with the given assumptions.

e m00 Spec: Abstract specification of the algorithm.
New events: INITIALISATION and finish.

e m01 Colorops: Defines the possible operations on the coloring of the graph and establishes
their correctness. Includes the proof of the convergence of colorl.
New events: colorl, colormove, invertpath

e m02 FixX: Introduces the vertex variable X and modifies the events to only work with
that vertex, and update it when appropriate.



e m03 FixY: Introduces the vertex variable Y and modifies the events to only work with
that vertex, and update it when appropriate.

e m04 Fan: Introduction of the concept of a fan.
New events: extend_fan, fan_done. The event colorl is split into colorla and color1b.

e m05 CDpath as path: The set representation of the cd-path is refined to refer to the
image of a path, as required by the algorithm.

e m06 CDpath building: The cd-path is represented in a variable, the calculation of the
cd-path is implemented.
New events: extendcdpath, noinvertpath.

e m07 Event ordering: The event guards are modified to ensure that they run in the desired
order. To this end, a variable stage is introduced.

e m(08 Conv Fan Build: Proofs convergence of stage 3, the construction of the fan.

e m(09 Conv CDpath: Proofs convergence of stage 2, the construction and inversion of the
cd-path..

e m10 Conv Fan Color: Proofs convergence of stage 1, the re-coloring of edges on the fan.
e mll Conv Stages: Completes convergence across all stages.

e ml12 Deadlock Freedom: Proofs the deadlock freedom.

5. Rodin impressions

Rodin is a modelling tool, and not a theorem prover. This is one conclusion of this project.
Although we were able to obtain the proof we wanted, and assuming soundness of Rodin, the
proof is a valid one, there were obstacles in the way. We will discuss some of the difficulties
encountered. Note that we used Rodin for the first time and without guidance, some of the
difficulties might be due to ignorance on our side and not limitations of the framework.

There is no support to define custom predicates, i.e. introduce abbreviations for formulas,
in Rodin itself. A plugin is available, the Theory plugin, to extend Rodin’s mathematical
notation, but it only allows to define predicates on a global level and not with regard to user-
introduced axioms or even within the scope of one machine. As a work-around, we defined the
axiom wvalid in the context, which is the set of all valid colorings, and used ¢ € valid to express
that the predicate is true for the coloring c. This works, although it can become annoying
as we had to manually unroll this definition to access the properties of a valid coloring. In
hindsight it might have been easier if we had, at least for the omnipresent variable coloring?2,
given these properties directly as invariants.

Rodin has support to express statements about the cardinality of finite sets, but the only few
proof rules are available. Therefore, to transform

card(A \ B) = card(A) — card(B),



5. Rodin impressions

where we know B C A, we had to first express it in terms of cardinality of a union to be able
to use the existing rule

card(A U B) = card(A) + card(B) — card(AN B)
and continue from there ]

Pulling the cardinality operator across a function, e.g.
card(ran(f)) < card(dom(f)),

or the equality of domain and range of injective functions were not expressible at all (or we
were not able to find a workaround). This is the reason for the introduction of axm13, a fact
that should be provable given the other axioms.

Occasionally, we were missing an indicator function, at least for natural numbers. We worked
around it by using expressions such as (min({stage,2}) — 1), which worked well enough. Al-
though Rodin has rules to automatically replace an expression min({3,2}) by 2, it would leave
an expression 3 — 2 in the goal. To solve this, the user has to add 3 — 2 = 1 as a hypotheses,
prove this using the automatic provers, and then manually apply the quality.

In the action specification of an event, it is not possible to refer to the after-state 2’ of a
variable = set before. This causes repetition, for example in the event color! of the model
FixY: In actl, we update the variable coloring2 with some larger expression and have to
repeat that expression in act2. Similarly, the non-deterministic assignment to X and Y in
act3 of the initialisation causes a proof obligation of feasibility. Later refinements have to
assign the variables fan and cdpath in a manner that deterministically depends on the new
values of X and Y. But as the assignment cannot refer to X’ and Y”, so the action act3 has
to be modified to also set fan and cdpath. This causes the same feasibility proof obligation to
reoccur in later models.

In general, proofs within Rodin are write-once, read never. This is very different from, for
example, the structured proofs done with the theorem prover Isabellefisa], and discourages
large proofs. We assume that this is intentional, as a very large proofs probably indicate that
some refinement step was too large, and that using additional events or invariants, the proof
would be smaller. Nevertheless, some large proofs were not avoidable in the course of this
project.

Although Rodin seems to try hard to retain proofs even if the underlying model is changed, it
does not always succeed and would throw away the old proof then. Given the time spent on
some proofs, this stopped us from doing more clean-up of invariants and events after finishing
the modelling. Even a simple change, such as removing the unnecessary variable coloring of
the initial model would lose many proofs in later models.

There are few choices to extract the models in a presentable way. Basically, there is only the
KTEX plugin, which is used in this report. It can export one model at a time, which results
in a lot of clicks when exporting the whole development, and produces full ITEX documents,
which were to be mangled by bash and perl to obtain fragments that could be included in this
document. Because of the single-model focus, it repeats guards and actions of refined events
even when the event is only extended.

3Upcoming versions of Rodin are likely to have a rule for the cardinality of set differences.



6. Lessions learned

If we would do the same project again, we would tackle it with slight modifications. Some of
these changes should be possible to implement after finishing the project as well, if it were not
for the problem mentioned above that some changes cause too many proof obligations to be
lost.

The finish event of the first refinement only needs a guard. As our goal is to proof a theorem,
and not to develop a real-life system, we are not so much interested in the final coloring but
only in its existence. Therefore, the guard

grdl: Jc-c € graph — C A ¢ € valid

is sufficient for our cause, and the variable coloring as well as the assignments to it and the
invariants concering it could be removed without loss.

It would have been cleaner to introduce the stages much earlier, possibly after the m01 Colorops
refinement. This would allow to define invariants about the variable ¢ and d, the fan or the cd
path only when they are actually valid. For example, we do not care about ¢ and d in stage
3, and the properties of the cd-path are only relevant in stage 2. In the currenct way, some
invariants about the cd-path are predicated by pathl > 0, e.g. using the empty path whenever
the path variable is actually irrelevant.

Additionally, this would allow to prove termination for the events of each stage independently,
therefore the work-arounds of the kind (min({stage,2}) — 1) would be unnecessary and most
variants could be expressed as sets instead of natural numbers, avoiding the poorly supported
cardinality operator.

As mentioned above, the introduction of the set walid for a valid coloring was less helpful
than expected. Especially if the first model would not contain an coloring variable, the
properties of a valid coloring would only occur in the guard of finish and the invariants of the
first refinement, which is an acceptable level of repetition.
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A. The models

A. The models

This appendix contains the details of the models. The comments are part of the model and
included here by the ITEX plugin. Information about the generated proof obligations is not
available.

A.1l. Input

CONTEXT Input
This context defines the parameters of our algorithm, e.g. the graph for which we have

to find a suitable coloring.
SETS

V. nodes of the graph
C available colors
CONSTANTS

graph The graph, represented as a relation over the nodes

N The maximum degree of the graph

valid This is a convenience definition, the set of all valid, possibly incomplete,
colorings of the graph. This is required as Rodin does not allow for an easy way
to define custom predicates, especially not some that are define with respect to an
user-introduced constant.

AXIOMS

axml : finite(V)
We only consider finite graphs.

axm2 : finite(C)
And the number of available colors is finite, too (otherwise we may not talk about
its cardinality).

axm3 : graph € (V < V)
Type specification for the constant graph.

axmé : finite(graph)
This would follow from the previous two axioms. We include it for convenience.

axmb : graph~! = graph
Our graph is undirected. We represent that as a directed graph where all inverted
edges are present.

axmé : Vz-card(graphl{z}]) < N
The degree of each node is at most N,...

axm7 : N € N
...which is a natural number.

axm8 : Vz-(x +— z) ¢ graph
The graph has no autoloops.

axm9 : card(C) =N + 1
The number of available colors is larger than the largest degree.

axml0 : valid € P(graph + C)
We introduce a constant to be able to concisely write that a coloring is valid.



A.2. m00 Spec

axmll : walid = {c|
¢ € graph + C
ANNVz-Vy-VzVd-(z—y)—d)ech((z—2)—d)€c=y=2)
ANNVzVyVd-(z—y)—d) €ec=((y—z)—d)ec)}
A coloring is valid if: (1) It is a partial function from the graph edges to the set
of colors. (2) Different edges on one node have different colors. (3) It is consistent
with the fact that we actually consider undirected graphs.
axml2 : graph # &
Not part of the official specification, but otherwise we have nothing to prove any-
ways, and we need this to assign varibles later.
axml3: Ve-c¢ € valid = (Vy-3d-Vz-y — 2z — d & ¢)
This should be provable from the above definitions.
END

A.2. m00 Spec

MACHINE mO00_Spec

The first model gives the abstract specification of the problem.
SEES Input
VARIABLES

coloring

INVARIANTS
invl : coloring € graph + C
inv2 : coloring € valid

EVENTS
Initialisation
begin
actl: coloring := @
end
Event finish =
When we know that there is a valid coloring that colors the whole graph, we are done.

when

grdl : dc-c € graph — C A ¢ € valid
then

actl: coloring : |coloring’ € graph — C A coloring’ € valid
end

END

A.3. m01 Colorops

MACHINE mO01_Colorops

Definition of the operations on the coloring along the way.
REFINES m00_Spec
SEES Input



A. The models

VARIABLES

coloring

coloring?2 This is the mutable coloring that we work on during the execution of the
program.

INVARIANTS

invl : coloring?2 € wvalid
The coloring will always stay valid.
EVENTS
Initialisation
extended
We start with an empty coloring.
begin
actl: coloring := O
act2: coloring? := @
end
Event finish =
And we are done once all edges are colored.
refines finish
when
grdl : dom(coloring2) = graph
then
actl: coloring := coloring2
end
Event colorl =
This event colors an edge that can be colored without invalidating the coloring.
Status convergent
any
x

Yy
d

where

grdl : z — y € graph

grd2: x +— y ¢ dom(coloring2)

grd3: Vz-(z — 2) — d ¢ coloring?

grdd : Vz-(y — z) — d ¢ coloring?2
then

actl: coloring2 := coloring2 U {z +— y+— d,y — = — d}
end

Event colormove =
An edge may be colored by simultanously uncoloring a neighboring edge, if the color is

free on the other side.
Status anticipated

any

10



A.4. m02 FixX

w
where
grdl : xz — y € graph
grd2: z — w € graph
grd3: z+— y ¢ dom(coloring?2)
grd4 : z+— w € dom(coloring?2)
grd5 : Vz-—(y — z — coloring2(z — w)) € coloring?2
then
actl: coloring? := ({z — w,w — z} <9 coloring2) U {z — y — coloring2(z —
w),y — x — coloring2(x — w)}
end

Event invertpath =
Two colors ¢ and d may be flipped in a region of the graph that is closed with regard to
those two colors.
Status anticipated
any
c
d
path
where
grdl: ce C
grd2: de C
grd4 : path C V
grd3: Vy-y € path=(Vz-((y — 2z +— ¢ € coloring2Vy — z +— d € coloring2)=z €
path))
The path is closed with regard to these colors.
then
actl: coloring? = {(y — z — ¢€')|
Jde-(y — 2+ e) € coloring2 N\
(((y € path \V z € path)
AN(e=dne =c)V(e=che =d)V(e£dNe#cNhe=¢)))
V (y € path A z ¢ path A\ ¢’ = e))
}
As one can guess, this definition causes proofs to be come difficult.
end

VARIANT
card(graph) — card(dom(coloring?))
We never decrease the number of colored edges, so this terminates eventually.
END

A.4. m02 FixX

MACHINE m02_FixX

Fixes the variable X. Events are refined to remove X from the list of parameters.
REFINES m01_Colorops
SEES Input

11



A. The models

VARIABLES

coloring
coloring2

X This vertex is on one side of the uncolored edge and is not altered during any
recolorings.

INVARIANTS

invli: X eV
X is a vertex.
inv2 : dom(coloring2) = graph vV (3y-(X — y € graph N X — y ¢ dom(coloring?2)))
Unless we are already done, there is an uncolored edge from this node.
EVENTS
Initialisation
extended
begin
actl: coloring := O
act2: coloring2:= O
act3: X :|Jy- X' — y € graph
end
Event finish =
extends finish
when
grdl : dom(coloring2) = graph
then
actl: coloring := coloring?
end

Event colorl =
refines colorl

any
Y
d
where
grdl : X — y € graph
grd2: X — y ¢ dom(coloring?2)
grd3: Vz-(X — z) — d ¢ coloring2
grdd : Vz-(y — z) — d & coloring?2
with
x:x=X
then
actl: coloring2 := coloring2 U{X — y— d,y — X — d}
act2: X :|dom(coloring2 U{X — y+— d,y— X — d}) = graph V
(3z- X"~ z € graph \ dom(coloring2 U{X — y— d,y — X — d}))
After we colored the edge, we need to find a new uncolored X, at least unless
the graph is fully colored. At this point it would be nice to be able to refer to
coloring?2’.
end

12



A.5. m03 FixY

Event colormove =
Status anticipated
refines colormove

any
Y
w
where
grdl : X — y € graph
grd2: X — w € graph
grd3: X — y ¢ dom(coloring2)
grd4 : X — w € dom(coloring2)
grd5 : Vz-—(y — z — coloring2(X — w)) € coloring?2
with
x:x=X
then
actl: coloring2 == ({X — w,w — X} < coloring2) U {X — y — coloring2(X
w),y — X — coloring2(X — w)}
end

Event invertpath =
Status anticipated
extends invertpath

any
c
d
path
where
grdl: ceC
grd2: deC
grd4d : path CV
grd3: Vy-y € path= (Vz-((y = z +— ¢ € coloring2Vy +> z — d € coloring2) =
z € path))
The path is closed with regard to these colors.
then
actl: coloring2:={(y+— z > ¢&')|
Je-(y+> z+> e) € coloring2 A
(((y € path V z € path)
AN((e=dAe =c)V(e=cAhe =d)V(e£dAe#che=¢)))
V (y ¢ path Az ¢ path A e’ = e))
}
As one can guess, this definition causes proofs to be come difficult.
end
END
A.5. m03 FixY

MACHINE m03_FixY

Fixes the variable Y (which changes with colorl and colormove), and removes it from

13
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parameter lists.
REFINES m02_FixX
SEES Input
VARIABLES

coloring
coloring?
X
Y
INVARIANTS
invl : dom(coloring2) = graph vV X — Y € graph \ dom(coloring2)
EVENTS
Initialisation
begin
actl: coloring := @
act2: coloring? := @
act3: X, Y :| X' — Y’ € graph
end
Event finish =
extends finish
when
grdl : dom(coloring2) = graph
then
actl: coloring := coloring?2
end

Event colorl =
refines colorl

any
d
where
grdl: X — Y € graph
grd2: X — Y ¢ dom(coloring2)
grd3: Vz-(X +— z) — d ¢ coloring2
grdd : Vz-(Y — z) — d ¢ coloring?2
with
y:y=Y
then
actl: coloring2 := coloring2 U{X — Y —d, Y — X — d}
act2: X, Y :|dom(coloring2 U{X — Y — d,Y — X — d}) = graph Vv
X" — Y'" € graph \ dom(coloring2 U{X — Y — d,Y — X — d})
end

Event colormove =
Status anticipated
refines colormove
any
w
where

14



A.6. m04 Fan

grdl: X — Y € graph
grd2: X — w € graph
grd3: X — Y ¢ dom(coloring?2)
grdd : X — w € dom(coloring2)
grd5 : Vz-=(Y +— z +— coloring2(X — w)) € coloring?2
with
y:y=Y
then
actl: coloring?2 := ({X — w,w — X} < coloring2) U {X — Y — coloring2(X
w), Y — X — coloring2(X — w)}
act2: Y :i=w
end
Event invertpath =

Status anticipated
extends invertpath

any
c
d
path

where
grdl: ceC
grd2: de€C

grd4: path CV
grd3: Vy-y € path= (Vz-((y — z — ¢ € coloring2Vy ~— z — d € coloring2) =
z € path))
The path is closed with regard to these colors.
then
actl: coloring2:= {(y+— z — €')|
Je-(y — z > e) € coloring2 A
(((y € path V z € path)
AN(le=dAe =c)V(e=cAhe =d)V(e£dANeF£cAhe=2¢)))
V (y ¢ path Az ¢ path A e =e))
}
As one can guess, this definition causes proofs to be come difficult.
end

END

A.6. m04 Fan

MACHINE m04_Fan

This machine introduces the concept of the fan.
REFINES mO03_FixY
SEES Input
VARIABLES

coloring

coloring?

15



A. The models

X

Y

fan The fan.

1 The size of the fan.
INVARIANTS

inv3: X — Y ¢ dom(coloring2) = 1 € N;
Some of these things only hold if we are not already done, thus the implication in
the invariants.
inv9: X — Y € dom(coloring2) = 1= 0
If we are done, the fan should be the empty function.
inv2: fane 1. 1—V
invl: X — Y ¢ dom(coloring2) = (fan(1) =Y)
The fan always starts with Y.
invd: Vn-n € 1 ..1= X — fan(n) € graph
The fan contains neighbours of X.
invs: Vn-n € 2..1= X — fan(n) € dom(coloring2)
All edges to fan vertices but the first are colored.
invé: Vn-n € 1..(I—1)=(Vz-Vd-(fan(n) — z — d) € coloring2=-(X — fan(n+1) —
d) ¢ coloring?2)
And the color of such an edge is free on the preceding vertex on the fan.
EVENTS
Initialisation
begin
actl: coloring := @
act2: coloring? := &
act3: X, Y, fan: (X' — Y’ € graph A fan' = {1 — Y'})
actd: l:=1
end
Event finish =
extends finish
when
grdl : dom(coloring2) = graph
then
actl: coloring := coloring?
end
Event colorlia =
At this point, the colorl event is split into one that finishes the algorithm, and one where
we have to continue.
refines colorl
any
d
where
grdl: X — Y € graph
grd2: X — Y ¢ dom(coloring?2)
grd3: Vz-(X +— z) — d ¢ coloring2
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grdd : Vz-(Y — z) — d ¢ coloring2
grd5 : dom(coloring2 U{X — Y — d,Y — X +— d}) = graph
This is the last uncolored edge.
then
actl: coloring2 := coloring2 U{X — Y — d, Y — X — d}
act4d : fan =
We remove the fan.
act3: [:=10
end
Event colorib =
This is not the last edge.
refines colorl
any
d
X2 So here is our next edge to be colored.
Y2
where
grdl: X — Y € graph
grd2: X — Y ¢ dom(coloring?2)
grd3: Vz-(X — z) — d ¢ coloring?2
grdd : Vz-(Y = z) — d ¢ coloring2
grd5: X2 w— Y2 € graph \ dom(coloring2 U{X — Y — d,Y — X — d})
then
actl: coloring2 := coloring2 U{X — Y —d,Y — X — d}
act2: X := X2
act3: Y :=Y2
actd: fan :={1+— Y2}
The fan is initialized with the new value of Y.
actb: [:=1
end
Event colormove =
This refinement ensures that colormove is only applied to the first edge of the fan, thus
removing one paramter.
Status anticipated
refines colormove
when
grdl: X — Y € graph
grd3: X — Y & dom(coloring?2)
grdd: [ > 2
with
w: w=fan(2)
then
actl: coloring?2 = ({X — fan(2),fan(2) — X} < coloring2) U {X — Y —
coloring2(X — fan(2)), Y — X — coloring2(X — fan(2))}
act2: Y := fan(2)
act3: fan:=An-ne€1..l—1|fan(n+ 1))
The fan is updated afterwards.
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act4d
end

cli=10—1

Event invertpath_ k =
We only invert a cd-path if there is an edge of color d towards the fan (otherwise the

cd-path is

empty anyways).

Status anticipated
extends tnvertpath

any
c
d
path
k
where

grdl :

grd2
grd4
grd3

Fan edge with color d

ceC

:deC

: path CV

: Vy-y € path= (Vz-((y — z — ¢ € coloring2Vy + z > d € coloring2) =

z € path))
The path is closed with regard to these colors.

grd9
grdb
grd7
grd8

e Ny

. X € path

2 Vz-(fan(l) = z — d) ¢ coloring?2
: V2 (X = 2+ ¢) & coloring?2

grdil: kel ..l—-1
grd10: (X — fan(k + 1) — d) € coloring2

then
actl

: coloring2 := {(y— z +— €')|
Je-(y+ z+> e) € coloring2 A
(((y € path V z € path)
AN(le=dAe =c)V(e=cAhe =d)V(e£dAeFche=2¢)))
V (y ¢ path Az ¢ path A e’ =e))

}

As one can guess, this definition causes proofs to be come difficult.

act2

1

1, fan :|(fan(k) € path=1" = INfan' = fan)A(fan(k) ¢ path=1" = kA fan’ =
..k < fan)

We either use the old path, or take a prefix thereof.

end

Event extendfan =

This event builds up the fan by adding a new vertex, if possible.
Status anticipated

any
z
where

grd4 :
grdl:
grd2 :
grd3:

18

l e Ny

z & ran(fan)

X +— z € dom(coloring?2)

Yw-Vd-fan(l) — w +— d € coloring2 = d # coloring2(X +— 2)



then

actl: =1+ 1

act2: fan:=fan U {l+ 1 — z}
end

Event fan_done =

A.7. m05 CDpath as path

This event does nothing in this refinement, but fires when the fan is fully built. This will

later be refined with some action.
Status anticipated

when
grdl: | € Ny

grd2 : —(3z-(z ¢ ran(fan) A X — z € dom(coloring2) ANVw-Vd-fan(l) — w — d €

coloring2 = d # coloring2(X — 2)))
then
skip
end
END

A.7. m05 CDpath as path

MACHINE m05_CDpath_as_path

The c-d-path should be a path
REFINES m04_Fan
SEES Input
VARIABLES

coloring
coloring2

X

Y

fan

1 length of fan

EVENTS
Initialisation
extended
begin
actl: coloring := O
act2: coloring2:= g
act3: X,Y,fan: (X' — Y € graph A fan' = {1 — Y'})
actd: 1:=1
end
Event finish =
extends finish
when
grdl : dom(coloring2) = graph
then
actl: coloring := coloring?2
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end

Event colorla =
extends coloria
any
d
where
grdl: X+— Y € graph
grd2: X+ Y ¢ dom(coloring?2)
grd3: Vz- (X z) +— d ¢ coloring2
grd4 : Vz-(Y— z) — d ¢ coloring?2
grd5 : dom(coloring2 U {X+— Y+ d,Y+— X+ d}) = graph
then
actl: coloring2 := coloring2 U{X— Y~ d,Y+— X+ d}
act4d: fan:= O
act3: 1:=0
end
Event colorlb =
extends color1b
any
d
X2
Y2
where
grdl: X+— Y € graph
grd2: X — Y ¢ dom(coloring2)
grd3: Vz-(X+— z) +— d ¢ coloring?2
grd4 : Vz-(Y— z) — d ¢ coloring2
grd5 : X2+ Y2 € graph \ dom(coloring2 U{X+— Y —d,Y+— X — d})
then
actl: coloring2:= coloring2 U{X+— Y —d,Y+— X — d}
act2: X:=X2
act3: Y:=Y2
act4d : fan:= {1+ Y2}
actb: 1:=1
end
Event colormove =
Status anticipated
extends colormove
when
grdl : X — Y € graph
grd3: X+ Y ¢ dom(coloring?2)
grdd: 1>2
then
actl: coloring2 := ({X — fan(2),fan(2) — X} <9 coloring2) U {X — Y —
coloring2(X — fan(2)),Y — X — coloring2(X — fan(2))}
act2: Y:= fan(2)
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act3: fan:=(Anne€1..1— 1|fan(n+1))
act4: 1:=1-1
end
Event invertpath_k =
Status anticipated
refines invertpath_k
any
c
d
cdp
k Fan edge with color d
pl path length
where
grd13d: pleN
grdl2: edp e 0..pl =V
grdl: ce C
grd2: d e C
grd3: Vi-i € 1 ..pl— 1= (Vz-(cdp(i) — z — ¢ € coloring2 V cdp(i) — z — d €
coloring2) = (z = edp(i — 1)V z = cdp(i + 1)))
grd9 : | € Ny
grd5: cdp(0) =X
grd7 : Vz-(fan(l) — z — d) ¢ coloring?2
grd8: Vz-(X — z — ¢) ¢ coloring?
grdil: kel .. l—1
grd10: (X — fan(k + 1) — d) € coloring2
grdid : Vz-cdp(0) — z — d € coloring2 = (pl > 0 A z = cdp(1))
grdis: pl > 0 = (Vz-(cdp(pl) — z — ¢ € coloring2 V cdp(pl) — z — d €
coloring2) = (z = cdp(pl — 1)))
with
path : path = ran(cdp)
then
actl: coloring2 :={(y — z+— €)|Fe-(y — 2z — e) € coloring2 A (((y € ran(cdp)V
zeran(cdp)) N((e=dANe =c)V(e=che =d)V(e#£dNeF#cNhe=
eV (y ¢ ran(cdp) A z & ran(cdp) A e’ = e€))}
act2: I, fan : |(fan(k) € ran(cdp) =1 = LA fan' = fan) A (fan(k) ¢ ran(cdp) =1 =
kA fan' =1 ..k < fan)
end
Event extendfan =
Status anticipated
extends extendfan
any
z
where
grdd: 1 e Ny
grdl: z ¢ ran(fan)
grd2: X+ z € dom(coloring?2)
grd3: Vw-Vd-fan(l) — w+— d € coloring2 = d # coloring2(X — z)
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then

actl: 1:=1+1

act2: fan:=fanU {1+ 1+ z}
end

Event fan_done =
Status anticipated
extends fan_done

when
grdl: 1eN;
grd2: —(3z-(z ¢ ran(fan) A X — z € dom(coloring2) A Vw-Vd-fan(l) — w+— d €

coloring2 = d # coloring2(X — z)))

then
skip

end

END

A.8. m06 CDpath building

MACHINE m06_CDpath_building

The cd-path is being built up, similar to the fan before.
REFINES m05_CDpath_as_path
SEES Input
VARIABLES

coloring
coloring?
X
Y
fan
1 length of fan
cdpath The cd-path (or a prefix of it, while it is being constructed).
pathl The length of the cd-path.
d_ This color is free on the last vertex of the fan.
c_ This color is free on X. Together they define the cd-path.
INVARIANTS
invé: d_€ C
invs: c.e C
invl : cdpath € 0 .. pathl — V
inv2: pathl € N
inv3: edpath(0) = X
The cd-path always starts with X.
invd : Vi-i € 1 .. pathl — 1 = (Vz-(cdpath(i) — z — c_ € coloring2 V cdpath(i) — z +—
d_ € coloring2) = (z = cdpath(i — 1) V z = cdpath(i+ 1)))
An edge with color ¢ or d causes that edge to enlargen the cdpath.
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inv7 : pathl > 0 = (Vz-cdpath(0) — z — d_ € coloring2 = z = cdpath(1))
From X, the cd-path extends along edges of color d, as c is free on X.

inv8: pathl > 0 = (Vz-(X — 2z +— c_) ¢ coloring?2)
c is free on X, at least once we started to build up the cd-path.
inv9 : Vi-i € 1 .. pathl = (cdpath(i) — cdpath(i — 1) — c_ € coloring2 V cdpath(i)
cdpath(i — 1) — d_ € coloring?2)
Vertices on the cd-path are connected by an edge of color c or d.
invi0: X — Y ¢ dom(coloring2) = (Vz-(fan(l) — z — d_) ¢ coloring?2)
Unless we are done, d is free on the last vertex of the fan.
EVENTS
Initialisation
begin
actl: coloring :== @
act2: coloring? := o
act3: X, Y, fan, cdpath : | X' — Y' € graph A fan' = {1 — Y’} A cdpath’ = {0 —
X'}
actd: l:=1
actb: pathl := 0
act6: c_:€ C
act7: d_:€ C
end
Event finish =
extends finish
when
grdl : dom(coloring2) = graph
then
actl: coloring := coloring2
end
Event colorla =
extends colorla
any
d
where
grdl: X — Y € graph
grd2: X+ Y ¢ dom(coloring?2)
grd3: Vz-(X+ z) +— d ¢ coloring?2
grd4 : Vz-(Y+ z) +— d ¢ coloring?2
grd5 : dom(coloring2 U {X+— Y+ d,Y+— X+ d}) = graph
This is the last uncolored edge.
grd6 : pathl = 0
then
actl: coloring2:= coloring2 U{X+— Y —d,Y+— X — d}
actd: fan:= 9
We remove the fan.
act3: 1:=0
end
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Event colorlb =
extends colorib
any
d
X2 So here is our next edge to be colored.
Y2
where
grdl: X — Y € graph
grd2: X — Y ¢ dom(coloring?2)
grd3: Vz-(X+— z) +— d ¢ coloring?2
grd4 : Vz- (Y z) +— d ¢ coloring2
grd5 : X2+ Y2 € graph \ dom(coloring2 U{X+— Y —d,Y+— X — d})
then
actl: coloring2:= coloring2 U{X+— Y —d,Y+— X — d}
act2: X:=1X2
act3: Y:=Y2
act4d : fan:= {1+ Y2}
The fan is initialized with the new value of Y.
actb: 1:=1
act6 : cdpath .= {0 — X2}
act7 : pathl := 0
act8: d_:|Vz- (Y2 z+— d') ¢ coloring2 U{X — Y = d, Y — X — d}
We need to find a new d.
end
Event colormove =
Status anticipated
extends colormouve
when
grdl: X — Y € graph
grd3: X — Y ¢ dom(coloring?2)
grdd: 1>2
grd5 : pathl = 0
then
actl: coloring2 := ({X — fan(2),fan(2) — X} <9 coloring2) U{X — Y —
coloring2(X +— fan(2)),Y — X — coloring2(X — fan(2))}
act2: Y:= fan(2)
act3: fan:= (An'n€1..1—1|fan(n+ 1))
The fan is updated afterwards.
actd: 1:=1-1
end
Event invertpath_k =
We want to use the calculated cd path, of course, so the parameters are replaced.
Status anticipated
refines invertpath_k
any
k Fan edge with color d
where
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grdl6 : pathl > 0
grd9 : [ € Ny
grdll: kel .. l—1
grd10: (X — fan(k + 1) — d_) € coloring?
grdlb : Vz-(cdpath(pathl) — z — c_ € coloring2 V cdpath(pathl) — z — d_ €
coloring2) = (z = cdpath(pathl — 1))
This ensures that the cd-path is already fully calculated.
with
d: d=d_
c:c=c_
cdp : cdp = cdpath
pl: pl = pathl
then
actl: coloring2 = {(y — 2z — €)|Fe-(y — z — e) € coloring2 N (((y €
ran(cdpath) V z € ran(cdpath)) AN ((e =d_Ne' =c)V(e=c.Ne =d_ )V (e#
d_-Ne#c_.Ne=¢)))V(y ¢ ran(cdpath) A z ¢ ran(cdpath) A e’ = ¢€))}
act2: I, fan : |(fan(k) € ran(cdpath)=1' = INfan' = fan)A(fan(k) ¢ ran(cdpath)=
I'=kAfan' =1 .. k< fan)
act3: cdpath == {0 — X}
act4 : pathl :== 0
actb: c_:=d_
end
Event no_invertpath =
Status anticipated
when
grd2: | € Ny
grdd : Vz-X v z — d_¢ coloring?
d is free on X, so no path to build.
grd5 : —(3z-(z ¢ ran(fan) N X — z € dom(coloring2) AN (NYw-Vd-fan(l) — w — d €
coloring2 = d # coloring2(X — 2))))
This ensures that the fan is maximal.
then
actd: c_:=d_
If the fan is maximal and d free on X, then the cd-path is empty and we conclude
that d is free on X.
end
Event extendfan =
Status anticipated
extends extendfan
any
z
where
grdd: 1 e N
grdl: z ¢ ran(fan)
grd2: X+ z € dom(coloring?2)
grd3: Vw-Vd-fan(l) — w+— d € coloring2 = d # coloring2(X  z)
grd5 : pathl = 0
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then
actl: 1:=1+1
act2: fan:=fanU {1+ 1+ z}
act3: d_:|Vw-z — w > d_ ¢ coloring2
We need to update d, the free color of the last node on the fan.
end

Event extendcdpath =
This builds the cd-path by extending it along edges of color ¢ or d.
Status anticipated
any
z
where
grdl: z e V
grd2 : z ¢ ran(cdpath)
grd3 : cdpath(pathl) — z — c_ € coloring2 V cdpath(pathl) — z — d_ € coloring?2
grdd : Vz-X — z +— c_ ¢ coloring?2
then
actl: cdpath := cdpath U {pathl + 1 — 2z}
act2: pathl := pathl + 1
end
Event fan_done =
Status anticipated
extends fan_done
when
grdl: 1 e Ny
grd2: —(3z-(z ¢ ran(fan) A X — z € dom(coloring2) A Vw-Vd-fan(l) — w— d €
coloring2 = d # coloring2(X — z)))
grd3: pathl = 0
then
actl: c_:|Vz- X — 2+ ¢ ¢ coloring2
end

END

A.9. m07 Event ordering

MACHINE m07_Event_ordering
This refinement tightens the guards to run the events in the desired order.
REFINES m06_CDpath_building
SEES Input
VARIABLES

coloring
coloring?
X

Y

fan
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1 length of fan
cdpath  cd-path (or prefix while building) (I am running ot of names)
pathl length of cd path
d_
c_
stage stage 3: buiding fan, stage 2: building cd-path and inverting it, stage 1: moving
color along path
INVARIANTS
invl: stage€ 1..3
inv4 : stage = 8 = pathl = 0
In strage three, the cd-path stays empty.
inv2: stage = 2 =1 € Ny A =(3z-(z ¢ ran(fan) N X — z € dom(coloring2) A
Vw-¥Yd-fan(l) — w — d € coloring2 = d # coloring2(X — z)))
In stage 2, the fan is fully calculated.
invb : stage = 2 = (Vz- X +— z +— c_ ¢ coloring?2)
And c is free on X.
inv3: stage=1=c_.=d-_
In stage one, we have d free on both X and the end of the fan.
inv6 : stage = 1 = pathl = 0
And in stage 1, the cd-path has been flipped or was empty in the first place.
inv7 : stage = 1 = (Vz-X — z — c_¢ coloring2)

EVENTS
Initialisation
extended
begin
actl: coloring:= ¢
act2: coloring2:=J
act3: X,Y,fan,cdpath : |[X' — Y’ € graph A fan’ = {1 — Y’} A cdpath’ = {0 — X'}
actd: 1:=1
actb: pathl :=0
act6: c_:€C
act7:d-:€C
act8: stage := 3
end

Event finish =
extends finish
when
grdl : dom(coloring2) = graph
then
actl: coloring := coloring?2
end

Event coloria =
extends colorla

any
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d
where
grdl: X — Y € graph
grd2: X — Y ¢ dom(coloring2)
grd3: Vz-(X+— z)+— d ¢ coloring?2
grd4 : Vz-(Y— z) +— d ¢ coloring2
grd5 : dom(coloring2 U {X+ Y+ d,Y+— X — d}) = graph
This is the last uncolored edge.
grd6 : pathl =0
grd? : stage = 1
then
actl: coloring2:= coloring2 U{X+— Y —d,Y+— X — d}
actd: fan:= o
We remove the fan.
act3: 1:=0
acth: stage := 3
end
Event colorib =
extends color1b
any
d
X2 So here is our next edge to be colored.
Y2
where
grdl: X+— Y € graph
grd2: X+ Y ¢ dom(coloring?2)
grd3: Vz-(X+ z) +— d ¢ coloring2
grd4 : Vz-(Y— z) +— d ¢ coloring?2
grd5: X2+ Y2 € graph \ dom(coloring2 U {X +— Y+ d,Y — X — d})
grd6 : stage = 1
then
actl: coloring2 := coloring2 U {X+— Y~ d,Y+— X+ d}
act2: X:=1X2
act3: Y:=Y2
actd : fan:= {1~ Y2}
The fan is initialized with the new value of Y.
actb: 1:=1
act6 : cdpath := {0 — X2}
act7: pathl =0
act8: d_:|Vz-(Y2+— z+— d) ¢ coloring2 U{X— Y +—d,Y+— X — d}
We need to find a new d.
act9: stage := 3
end
Event colormove =

Status anticipated
extends colormove

when
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grdl : X — Y € graph
grd3: X+— Y ¢ dom(coloring?)
grdd: 1>2
grd5: pathl =0
grd6 : stage = 1
then
actl: coloring2 := ({X — fan(2),fan(2) — X} < coloring2) U {X — Y
coloring2(X — fan(2)),Y + X + coloring2(X — fan(2))}
act2: Y:= fan(2)
act3: fan:=(Anne€1..1—1|fan(n+1))
The fan is updated afterwards.
act4: 1:=1-1
end
Event invertpath_k =
Status anticipated
extends invertpath_k
any
k Fan edge with color d
where
grdl6 : pathl >0
grd9: 1 e Ny
grdll: kel..1-1
grd10: (X~ fan(k+ 1)+ d_) € coloring?2
grdl5: Vz-(cdpath(pathl) — z — c_ € coloring2 V cdpath(pathl) — z > d_ €
coloring2) = (z = cdpath(pathl — 1))
This ensures that the cd-path is already fully calculated.
grdl7 : stage = 2
then
actl: coloring2 := {(y — z — &')|Fe:(y — z — e) € coloring2 A (((y €
ran(cdpath)Vz € ran(cdpath))A((e =d_-Ae' =c)V(e=c.ANe'=d )V (e#
d-ANe#c_.Ne=¢)))V(y ¢ ran(cdpath) A z ¢ ran(cdpath) A e’ =e))}
act2: 1,fan : |(fan(k) € ran(cdpath) = 1" = 1 A fan’ = fan) A (fan(k) ¢
ran(cdpath) =1’ =k A fan’ =1 ..k < fan)
act3: cdpath:= {0 +— X}
act4d: pathl =0
actb: co:=d_
act6: stage := 1
end
Event extendfan =
Fan is extended first, as long as d_ is not c_ and it can be extended
Status anticipated
extends eztendfan
any
z
where
grdd: 1 e Ny
grdl: z ¢ ran(fan)
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grd2: X — z € dom(coloring2)

grd3: Vw-Vd-fan(l) — w+> d € coloring2 = d # coloring2(X — z)

grd5: pathl =0

grd7 : stage = 3
then

actl: 1:=1+1

act2: fan —fanU{l+1&—>z}

act3: d_:|Vw-z— wr d’ ¢ coloring?

We need to update d, the free color of the last node on the fan.

end

Event extendcdpath =

cd-path is calculated if fan is maximal and c_ is not d_
Status anticipated
extends extendcdpath

any
z
where
grdl: ze€V
grd2 : z ¢ ran(cdpath)
grd3: cdpath(pathl) + z +— c_ € coloring2 V cdpath(pathl) +— z — d_. €
coloring?2
grd4 : Vz-X+ z +> c_ ¢ coloring2
grd7 : stage = 2
grd5: c.# d-
then
actl: cdpath := cdpath U {pathl + 1 — z}
act2: pathl := pathl +1
end

Event fan_done =
Status anticipated
extends fan_done
when
grdl: 1 e Ny
grd2: —(3z-(z ¢ ran(fan) A X — z € dom(coloring2) A Vw-Vd-fan(l) — w+— d €
coloring2 = d # coloring2(X — z)))
grd3: pathl =0
grd4 : stage = 3
then
actl: c_:|Vz:X— z+ c ¢ coloring?
act2: stage := 2
end
Event noinvertpath =
Status anticipated
extends no_invertpath
when
grd2: 1 e Ny
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grd4 : Vz-X+ z+— d_¢ coloring?2
d is free on X, so no path to build.
grd5 : —(3z-(z ¢ ran(fan) A X — z € dom(coloring2) A (Vw-Vd-fan(l) — w—d €
coloring2 = d # coloring2(X — z))))
This ensures that the fan is maximal.
grdl : stage = 2
then
actd: c_.:=d_
If the fan is maximal and d free on X, then the cd-path is empty and we conclude
that d is free on X.
actl: stage :=1
end
END

A.10. m08 Conv Fan Build

MACHINE m08_Conv_Fan_Build
This refinement shows the convergence of fan building.
REFINES m07_Event_ordering
SEES Input
VARIABLES
coloring
coloring2
X
Y
fan
1 length of fan
cdpath  cd-path (or prefix while building) (I am running ot of names)
pathl length of cd path
d_
c_
stage  stage 3: buiding fan, stage 2: building cd-path and inverting it, stage 1: moving
color along path
EVENTS
Initialisation
extended
begin
actl: coloring :=
act2: coloring2:= o
act3: X,Y,fan,cdpath : [X' — Y’ € graph A fan’ = {1 — Y'} A cdpath’ = {0 — X'}
actd: 1:=1
actb: pathl :=0
act6: c_:€C
act7:d_:eC
act8: stage :=3
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end
Event finish =
extends finish
when
grdl : dom(coloring2) = graph
then
actl: coloring := coloring2
end
Event colorla =
extends colorla
any
d
where
grdl: X+— Y € graph
grd2: X+ Y ¢ dom(coloring?2)
grd3: Vz-(X+— z) +— d ¢ coloring2
grdd : Vz-(Y— z) +— d ¢ coloring?2
grd5 : dom(coloring2 U {X+— Y+~ d,Y — X+ d}) = graph
This is the last uncolored edge.
grd6 : pathl =0
grd7 : stage=1
then
actl: coloring2 := coloring2 U{X— Y~ d,Y+— X+ d}
actd: fan:= o
We remove the fan.
act3: 1:=0
actb: stage :=3
end
Event colorib =
extends color1b
any
d
X2 So here is our next edge to be colored.
Y2
where
grdl: X— Y € graph
grd2: X+ Y ¢ dom(coloring?2)
grd3: Vz-(X+— z) +— d ¢ coloring?2
grd4 : Vz-(Y— z) — d ¢ coloring?2
grd5 : X2 +— Y2 € graph \ dom(coloring2 U{X— Y —d,Y+— X — d})
grd6 : stage =1
then
actl: coloring2 := coloring2 U{X— Y~ d,Y+— X+ d}
act2: X:=1X2
act3: Y:=Y2
actd : fan:= {1~ Y2}
The fan is initialized with the new value of Y.
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A.10. m08 Conv Fan Build

actb: 1:=1

act6 : cdpath := {0 — X2}

act7: pathl :=0

act8: d_:|Vz-(Y2+— z+— d) ¢ coloring2 U {X— Y +—d,Y+— X — d}
We need to find a new d.

act9: stage :=3

Event colormove =
Status anticipated
extends colormove

when

then

end

grdl : X — Y € graph

grd3: X+ Y ¢ dom(coloring2)
grdd: 1>2

grd5: pathl =0

grd6 : stage =1

actl: coloring2 := ({X — fan(2),fan(2) — X} < coloring2) U {X — Y —
coloring2(X + fan(2)),Y — X + coloring2(X — fan(2))}

act2: Y := fan(2)

act3: fan:=(Anne1..1—1|fan(n+1))
The fan is updated afterwards.

act4: 1:=1-1

Event invertpath_k =
Status anticipated
extends invertpath_k

any
k Fan edge with color d
where
grdl6 : pathl >0
grd9: 1 e Ny
grdll: kel..1-1
grd10: (X~ fan(k+ 1)+ d_) € coloring?2
grd15 : Vz-(cdpath(pathl) — z +— c_ € coloring2 V cdpath(pathl) — z — d. €
coloring2) = (z = cdpath(pathl — 1))
This ensures that the cd-path is already fully calculated.
grdl7 : stage = 2
then

actl: coloring2 := {(y — z — &')|Fe:(y — z — e) € coloring2 A (((y €
ran(cdpath)Vz € ran(cdpath))A((e =d_-Ae' =c)V(e=c.ANe'=d )V (e#
d-ANe#c_.Ne=¢)))V(y ¢ ran(cdpath) A z ¢ ran(cdpath) N e’ =e))}

act2: 1,fan : |(fan(k) € ran(cdpath) = 1" = 1 A fan’ = fan) A (fan(k) ¢
ran(cdpath) =1’ =k A fan’ =1 ..k < fan)

act3: cdpath := {0 — X}

act4: pathl :=0

actb: c_:=d.
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act6: stage:=1
end
Event extendfan =
Fan is extended first, as long as d_ is not c_ and it can be extended
Status convergent
extends eztendfan
any
z
where
grdd: 1 e Ny
grdl: z ¢ ran(fan)
grd2: X — z € dom(coloring?2)
grd3: Vw-Vd-fan(l) — w+> d € coloring2 = d # coloring2(X — z)
grd5: pathl =0
grd7 : stage =3
then
actl: 1:=1+1
act2: fan —fanU{1+1+—>z}
act3: d_:|Vw-z+— wr> d’ ¢ coloring?
We need to update d, the free color of the last node on the fan.
end

Event extendcdpath =

cd-path is calculated if fan is maximal and c_ is not d_
Status anticipated
extends extendcdpath

any
z
where
grdl: ze€V
grd2: z ¢ ran(cdpath)
grd3: cdpath(pathl) — z — c_ € coloring2 V cdpath(pathl) — z — d_ €
coloring?2
grd4 : Vz-X +— z +— c_ ¢ coloring?2
grd7 : stage =
grd5: c.#d_
then
actl: cdpath := cdpath U {pathl + 1 — z}
act2: pathl :=pathl +1
end

Event fan_done =
Status anticipated
extends fan_done
when
grdl: 1 e Ny
grd2: —(3z-(z ¢ ran(fan) A X — z € dom(coloring2) A Vw-Vd-fan(l) — w+— d €
coloring2 = d # coloring2(X — z)))
grd3: pathl =0
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grd4 : stage = 3
then
actl: c_:|Vz:X =z c/ ¢ coloring?
act2: stage :=2
end
Event noinvertpath =
Status anticipated
extends noinvertpath
when
grd2: 1 e Ny
grd4 : Vz-X+ z — d_ ¢ coloring?2
d is free on X, so no path to build.
grd5 : —(3z-(z ¢ ran(fan) A X — z € dom(coloring2) A (Vw-Vd-fan(l) — w—d €
coloring2 = d # coloring2(X — z))))
This ensures that the fan is maximal.
grdl : stage = 2
then
actd: c_.:=d_
If the fan is maximal and d free on X, then the cd-path is empty and we conclude
that d is free on X.
actl: stage:=1
end
VARIANT

max({stage — 2,0}) * (card(V \ ran(fan)))
The variant is zero unless in stage 3. then it decreases while the fan size increases.
END

A.11. m09 Conv CDpath

MACHINE m09_Conv_CDpath

This refinement show the convergence of cd-path-building.
REFINES m08_Conv_Fan_Build
SEES Input
VARIABLES

coloring

coloring?2

X

Y

fan

1 length of fan

cdpath  cd-path (or prefix while building) (I am running ot of names)
pathl length of cd path

d_

Cc_
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stage stage 3: buiding fan, stage 2: building cd-path and inverting it, stage 1: moving
color along path
EVENTS
Initialisation
extended
begin
actl: coloring:=J
act2: coloring2:=J
act3: X,Y,fan, cdpath: [X' +— Y’ € graph A fan’ = {1 — Y'} A cdpath’ = {0 — X'}
actd: 1:=1
actb: pathl :=0
act6: c_:€C
act7:d.:€C
act8: stage :=3
end
Event finish =
extends finish
when
grdl : dom(coloring2) = graph
then
actl: coloring := coloring?2
end
Event coloria =
extends colorla
any
d
where
grdl: X— Y € graph
grd2: X+ Y ¢ dom(coloring?2)
grd3: Vz-(X+— z) +— d ¢ coloring?2
grd4 : Vz-(Y— z) +— d ¢ coloring?2
grd5 : dom(coloring2 U {X+— Y+ d,Y+— X+ d}) = graph
This is the last uncolored edge.
grd6 : pathl =0
grd7 : stage=1
then
actl: coloring2 := coloring2 U{X— Y~ d,Y+— X+ d}
act4d: fan:= o
We remove the fan.
act3: 1:=0
actb: stage:=3
end
Event colorib =
extends colorib
any
d
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X2 So here is our next edge to be colored.
Y2
where
grdl: X — Y € graph
grd2: X+ Y ¢ dom(coloring?2)
grd3: Vz-(X+ z) +— d ¢ coloring?2
grd4 : Vz-(Y+ z) — d ¢ coloring?2
grd5 : X2 — Y2 € graph \ dom(coloring2 U {X — Y — d,Y — X — d})
grd6 : stage =1
then
actl: coloring2:= coloring2 U{X+— Y —d,Y+— X — d}
act2: X:=X2
act3: Y:=Y2
actd : fan:= {1+ Y2}
The fan is initialized with the new value of Y.
actb: 1:=1
act6 : cdpath := {0 — X2}
act7: pathl :=0
act8: d_: |Vz-(Y2+— z+— d) ¢ coloring2 U {X— Y+ d,Y— X+ d}
We need to find a new d.
act9: stage := 3
end
Event colormove =
Status anticipated
extends colormove
when
grdl : X — Y € graph
grd3: X+— Y ¢ dom(coloring?)
grdd: 1>2
grd5: pathl =0
grd6 : stage =1
then
actl: coloring2 := ({X — fan(2),fan(2) — X} < coloring2) U {X — Y —
coloring2(X — fan(2)),Y +— X+ coloring2(X — fan(2))}
act2: Y:= fan(2)
act3: fan:=(Anne€1..1—1|fan(n+1))
The fan is updated afterwards.
act4d: 1:=1-1
end
Event invertpath_k =
Status anticipated
extends invertpath_k
any
k Fan edge with color d
where
grdl6 : pathl >0
grd9: 1 e Ny
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grdll: kel1..1-1
grdl0: (X~ fan(k+ 1) — d.) € coloring?2
grdib : Vz-(cdpath(pathl) — z — c_ € coloring2 V cdpath(pathl) — z — d_ €
coloring2) = (z = cdpath(pathl — 1))
This ensures that the cd-path is already fully calculated.
grdl7 : stage =2
then
actl: coloring2 := {(y — z — €')|de-(y — z — e) € coloring2 A (((y €
ran(cdpath) Vz € ran(cdpath)) A ((e =d-Ae' =c)V(e=c_.Ae' =d )V (e #
d_ANe#c_Ne=¢)))V(y ¢ ran(cdpath) A z ¢ ran(cdpath) A e’ =e))}
act2: 1,fan : |(fan(k) € ran(cdpath) =1 = 1 A fan’ = fan) A (fan(k) ¢
ran(cdpath) = 1" =k A fan’ =1 ..k < fan)
act3: cdpath := {0 — X}
act4d: pathl:=0
actb: co:=d_
act6: stage:=1
end
Event extendfan =
Fan is extended first, as long as d_ is not c¢_ and it can be extended
extends extendfan
any
z
where
grdd: 1 e Ny
grdl: z ¢ ran(fan)
grd2: X — z € dom(coloring?2)
grd3: Vw-VYd-fan(l) — w+> d € coloring2 = d # coloring2(X — z)
grd5: pathl =0
grd7 : stage =3
then
actl: 1:=1+1
act2: fan —fanU{l+1&—>z}
act3: d_:|Vw-z — w+> d ¢ coloring?2
We need to update d, the free color of the last node on the fan.
end

Event extendcdpath =
cd-path is calculated if fan is maximal and c_ is not d_
Status convergent
extends eztendcdpath
any
z
where
grdl: ze€V
grd2: z ¢ ran(cdpath)
grd3: cdpath(pathl) +— z +— c_ € coloring2 V cdpath(pathl) — z — d_ €
coloring2
grdd : Vz-X+ z+> c_¢ coloring?
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grd7 : stage = 2
grd5: c.#d-
then
actl: cdpath := cdpath U {pathl + 1 > z}
act2: pathl :=pathl +1
end
Event fan_done =
Status anticipated
extends fan_done
when
grdl: 1 e Ny
grd2: —(3z-(z ¢ ran(fan) A X — z € dom(coloring2) A Vw-Vd-fan(l) — w — d €
coloring2 = d # coloring2(X — z)))
grd3: pathl =0
grd4 : stage =3
then
actl: c_:|Vz:X =z c/ ¢ coloring?
act2: stage :=2
end
Event noinvertpath =
Status anticipated
extends noinvertpath
when
grd2: 1 e Ny
grd4 : Vz-X+ z +— d_ ¢ coloring?2
d is free on X, so no path to build.
grd5 : —(3z-(z ¢ ran(fan) A X — z € dom(coloring2) A (Vw-Vd-fan(l) — w—d €
coloring2 = d # coloring2(X — z))))
This ensures that the fan is maximal.
grdl : stage =2
then
actd: c.:=d_
If the fan is maximal and d free on X, then the cd-path is empty and we conclude
that d is free on X.
actl: stage:=1
end
VARIANT

min({max({stage — 1,0}),1}) % (1 + card(V \ ran(cdpath)))
The variant is zero in stage 3 and otherwise decreases while the size of the cd-path
increases.

END

A.12. m10 Conv Fan Color

MACHINE m10_Conv_Fan_Color

This refinement shows the convergence of fan destruction.
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REFINES m09_Conv_CDpath
SEES Input
VARIABLES

coloring

coloring?

X

Y

fan

1 length of fan

cdpath  cd-path (or prefix while building) (I am running ot of names)

pathl length of cd path

d_

c_

stage  stage 3: buiding fan, stage 2: building cd-path and inverting it, stage 1: moving
color along path

EVENTS
Initialisation
extended
begin
actl: coloring:=J
act2: coloring2:=J
act3: X,Y,fan, cdpath: [X' +— Y’ € graph A fan’ = {1 — Y'} A cdpath’ = {0 — X'}
actd: 1:=1
actb: pathl :=0
act6: c_.:€C
act7:d.:€C
act8: stage :=3
end

Event finish =
extends finish
when
grdl : dom(coloring2) = graph
then
actl: coloring := coloring?
end
Event colorla =
extends coloria
any
d
where
grdl: X+— Y € graph
grd2: X — Y ¢ dom(coloring2)
grd3: Vz-(X+— z) +— d ¢ coloring?2
grd4 : Vz-(Y— z) — d ¢ coloring?2
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then

end

A.12. m10 Conv Fan Color

grd5 : dom(coloring2 U {X— Y+~ d,Y+— X+ d}) = graph
This is the last uncolored edge.

grd6 : pathl =0

grd7 : stage =1

actl: coloring2 := coloring2 U{X— Y~ d,Y+— X+ d}

actd: fan:= o
We remove the fan.

act3: 1:=0

actb: stage :=3

Event colorib =

extends colorlb

any

d
X2
Y2

where

then

end

grdl
grd2

grd3:
grd4 :
grdb :
grd6 :

actl:
act2:
act3:

actd

So here is our next edge to be colored.

: X— Y € graph

: X+ Y ¢ dom(coloring?2)

Vz-(X — z) — d ¢ coloring?2

Vz-(Y — z) — d ¢ coloring?2

X2 — Y2 € graph \ dom(coloring2 U {X — Y+ d,Y — X > d})
stage =1

coloring2 := coloring2 U{X— Y~ d,Y+— X+ d}
X:=X2

Y:=Y2

: fan:= {1+ Y2}

The fan is initialized with the new value of Y.

acth
act6
act7
act8

:1:=1

: cdpath := {0 — X2}

: pathl:=0

s do:|Vz (Y2 z— d) ¢ coloring2 U {X — Y+—d,Y — X — d}

We need to find a new d.

act9

: stage: =3

Event colormove =
Status convergent
extends colormove

when

then

grdl
grd3

grd4 :

grdb

grd6 :

: X+— Y € graph

: X+ Y ¢ dom(coloring?2)
1>2

: pathl =0
stage =1
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actl: coloring2 := ({X — fan(2),fan(2) — X} <9 coloring2) U {X — Y —
coloring2(X — fan(2)),Y — X — coloring2(X — fan(2))}
act2: Y:= fan(2)
act3: fan:= (An'n€1..1—1|fan(n+ 1))
The fan is updated afterwards.
actd: 1:=1-1
end
Event invertpath_k =
Status anticipated
extends invertpath_k
any
k Fan edge with color d
where
grdl6 : pathl >0
grd9: 1 e Ny
grdll: kel..1-1
grd10: (X — fan(k+ 1) +— d_) € coloring?2
grdib : Vz-(cdpath(pathl) — z — c_ € coloring2 V cdpath(pathl) +— z — d_ €
coloring2) = (z = cdpath(pathl — 1))
This ensures that the cd-path is already fully calculated.
grdl7 : stage =2
then
actl: coloring2 := {(y — z — &')|Fe:(y — z — e) € coloring2 A (((y €
ran(cdpath)Vz € ran(cdpath))A((e =d-Ae' =c)V(e=c.Ne'=d )V (e#
d-ANe#c_.Ne=¢)))V(y ¢ ran(cdpath) A z ¢ ran(cdpath) N e’ =e))}
act2: 1,fan : |(fan(k) € ran(cdpath) =1’ = 1 A fan’ = fan) A (fan(k) ¢
ran(cdpath) = 1" =k A fan’ = 1..k < fan)
act3: cdpath := {0 — X}
act4d: pathl =0
actb: co:=d_
act6: stage:=1
end
Event extendfan =
Fan is extended first, as long as d_ is not c_ and it can be extended
extends extendfan
any
z
where
grdd: 1 e Ny
grdl: z ¢ ran(fan)
grd2: X+ z € dom(coloring?2)
grd3: Vw-Vd-fan(l) — w+ d € coloring2 = d # coloring2(X — z)
grd5: pathl =0
grd7 : stage =3
then
actl: 1:=1+1
act2: fan:=fanU {1+ 1+ z}
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act3: d_:|Vw-z+— wr d ¢ coloring?
We need to update d, the free color of the last node on the fan.

end

Event extendcdpath =
cd-path is calculated if fan is maximal and c_ is not d_
extends extendcdpath

any
z
where
grdl: ze€V
grd2 : z ¢ ran(cdpath)
grd3: cdpath(pathl) — z + c_ € coloring2 V cdpath(pathl) — z +— d_ €
coloring2
grd4 : Vz-X+ z +— c_¢ coloring?2
grd7 : stage = 2
grd5: c.#d.
then
actl: cdpath:= cdpath U {pathl + 1 — z}
act2: pathl :=pathl +1
end
Event fan_done =
Status anticipated
extends fan_done
when
grdl: 1 e Ny
grd2 : —(3z-(z ¢ ran(fan) A X — z € dom(coloring2) A Vw-Vd-fan(l) — w+—d €
coloring2 = d # coloring2(X +— z)))
grd3: pathl =0
grd4 : stage =3
then
actl: c_:|Vz:X+— z+> c ¢ coloring?2
act2: stage :=2
end
Event noinvertpath =
Status anticipated
extends noinvertpath
when
grd2: 1 e Ny
grd4 : Vz-X+ z — d_ ¢ coloring?2
d is free on X, so no path to build.
grd5: —(3z-(z ¢ ran(fan) AX — z € dom(coloring2) A (Vw-Vd-fan(l) — wr—d €
coloring2 = d # coloring2(X — z))))
This ensures that the fan is maximal.
grdl : stage =2
then
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actd: c.:=d_
If the fan is maximal and d free on X, then the cd-path is empty and we conclude
that d is free on X.
actl: stage:=1
end
VARIANT
(min({stage,2}) — 1) * (card(V) + 1) + max({2 — stage, 0}) * (1 + card(ran(fan)))
In stage 3 and 2, this is set to a large constant. In stage 1 it decreases with the size
of the fan.

END

A.13. mll Conv Stages

MACHINE ml11_Conv_Stages
To combine the three previous convergence proofs, we show that the stage variable de-
creases.

REFINES m10_Conv_Fan_Color
SEES Input
VARIABLES

coloring
coloring?
X
Y
fan
1 length of fan
cdpath  cd-path (or prefix while building) (I am running ot of names)
pathl length of cd path
d_
c_
stage  stage 3: buiding fan, stage 2: building cd-path and inverting it, stage 1: moving
color along path
EVENTS
Initialisation
extended
begin
actl: coloring := O
act2: coloring2 :=J
act3: X,Y,fan, cdpath : [X' — Y € graph A fan’ = {1 — Y'} A cdpath’ = {0 — X'}
actd: 1:=1
actb: pathl =0
act6: c_:€C
act7: d_:€C
act8: stage :=3
end
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Event finish =
extends finish

when

grdl : dom(coloring2) = graph
then

actl: coloring := coloring2
end

Event colorla =
extends colorla
any
d
where
grdl: X — Y € graph
grd2: X+ Y ¢ dom(coloring?2)
grd3: Vz-(X+ z) +— d ¢ coloring?2
grd4 : Vz-(Y+ z) +— d ¢ coloring?2
grd5 : dom(coloring2 U {X+— Y+ d,Y+— X+ d}) = graph
This is the last uncolored edge.
grd6 : pathl =0
grd7 : stage=1
then
actl: coloring2 := coloring2 U{X— Y~ d,Y+— X+ d}
actd: fan:= o
We remove the fan.
act3: 1:=0
actb: stage :=3
end
Event colorib =
extends color1b
any
d
X2 So here is our next edge to be colored.
Y2
where
grdl: X — Y € graph
grd2: X+ Y ¢ dom(coloring2)
grd3: Vz-(X+ z) +— d ¢ coloring?2
grd4 : Vz-(Y+ z) +— d ¢ coloring?2
grd5: X2 +— Y2 € graph \ dom(coloring2 U {X — Y~ d,Y — X — d})
grd6 : stage =1
then
actl: coloring2 := coloring2 U{X— Y~ d,Y+— X+ d}
act2: X :=1X2
act3: Y:=Y2
actd : fan:= {1~ Y2}
The fan is initialized with the new value of Y.
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actb: 1:=1
act6 : cdpath := {0 — X2}
act7: pathl:=0
act8: d_:|Vz:(Y2+— z+— d) ¢ coloring2 U {X— Y +—d,Y+— X — d}
We need to find a new d.
act9: stage :=3
end
Event colormove =
extends colormove
when
grdl: X+— Y € graph
grd3: X+ Y ¢ dom(coloring?2)
grdd: 1>2
grd5: pathl =0
grd6 : stage =1
then
actl: coloring2 := ({X — fan(2),fan(2) — X} < coloring2) U {X — Y —
coloring2(X — fan(2)),Y — X — coloring2(X — fan(2))}
act2: Y:= fan(2)
act3: fan:=(Anne1..1—1|fan(n+1))
The fan is updated afterwards.
actd: 1:=1-1
end
Event invertpath_k =

Status convergent
extends invertpath_k

any
k Fan edge with color d
where
grdl6 : pathl >0
grd9: 1 e N
grdll: kel..1-1
grd10: (X +— fan(k+ 1)+ d_) € coloring?2
grd15: Vz-(cdpath(pathl) + z > c_ € coloring2 V cdpath(pathl) +— z +— d_ €
coloring2) = (z = cdpath(pathl — 1))
This ensures that the cd-path is already fully calculated.
grdl7 : stage =2
then

actl: coloring2 := {(y — z — €')|de-(y — z — e) € coloring2 A (((y €
ran(cdpath)Vz € ran(cdpath)) A ((e =d-Ae' =c)V(e=c_.Ae' =d )V (e #
d_ANe#c_ Ne=¢)))V(y ¢ ran(cdpath) A z ¢ ran(cdpath) A e’ =e))}

act2: 1,fan : |(fan(k) € ran(cdpath) = 1" = 1 A fan’ = fan) A (fan(k) ¢
ran(cdpath) = 1" =k A fan’ = 1 ..k < fan)

act3: cdpath := {0 — X}

act4: pathl:=0

actb: co:=d_

act6: stage:=1
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end

Event extendfan =
Fan is extended first, as long as d_ is not c_ and it can be extended
extends extendfan
any
z
where
grdd: 1 e N
grdl: z ¢ ran(fan)
grd2 : X+ z € dom(coloring2)
grd3: Vw-Vd-fan(l) — w+ d € coloring2 = d # coloring2(X > z)
grd5: pathl =0
grd7 : stage =3
then
actl: 1:=1+1
act2: fan —fanU{1+1»—>z}
act3: d_:|Vw-z+— wr— d’ ¢ coloring?
We need to update d, the free color of the last node on the fan.
end

Event extendcdpath =

cd-path is calculated if fan is maximal and c_ is not d_
extends extendcdpath

any
z
where
grdl: ze€V
grd2: z ¢ ran(cdpath)
grd3: cdpath(pathl) — z — c_ € coloring2 V cdpath(pathl) — z +— d_ €
coloring?2
grd4 : Vz-X+ z +— c_¢ coloring?2
grd7 : stage =2
grd5: c.#d._
then
actl: cdpath:= cdpath U {pathl + 1 — z}
act2: pathl :=pathl +1
end

Event fan_done =
Status convergent
extends fan_done
when
grdl: 1 e Ny
grd2: —(3z-(z ¢ ran(fan) A X — z € dom(coloring2) A Vw-Vd-fan(l) — w+— d €
coloring2 = d # coloring2(X  z)))
grd3: pathl =0
grd4 : stage =3
then

47



A. The models

actl: c_:|Vz:X — z+> c ¢ coloring?2
act2: stage :=2
end
Event noinvertpath =
Status convergent
extends noinvertpath
when
grd2: 1 e Ny
grdd : Vz-X+ z+ d_ ¢ coloring?2
d is free on X, so no path to build.
grd5: —(Jz-(z ¢ ran(fan) AX — z € dom(coloring2) A (Vw-Vd-fan(l) — w—d €
coloring2 = d # coloring2(X — z))))
This ensures that the fan is maximal.
grdl : stage =2
then
actd: c.:=d_
If the fan is maximal and d free on X, then the cd-path is empty and we conclude
that d is free on X.
actl: stage:=1
end
VARIANT
stage

END

A.14. m12 Deadlock Freedom

MACHINE m12_Deadlock_Freedom
The last refinement has no visible changes in this report. Nevertheless, it has one proof
obligation: The deadlock freedom, which is the disjunction of all event guards. By
discharging this, we verify that our program does eventually reach the desired final state.

REFINES m11_Conv_Stages
SEES Input
VARIABLES

coloring

coloring?2

X

Y

fan

1 length of fan

cdpath  cd-path (or prefix while building) (I am running ot of names)
pathl length of cd path

d_

Cc_
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stage  stage 3: buiding fan, stage 2: building cd-path and inverting it, stage 1: moving

color along path
EVENTS
Initialisation
extended
begin
actl: coloring :=J
act2: coloring2:= g

act3: X,Y,fan, cdpath: |[X' — Y’ € graph A fan’ = {1+ Y’} A cdpath’ = {0 — X'}

actd: 1:=1
actb: pathl :=0
act6: c_:€C
act7: d.:eC
act8: stage :=3
end
Event finish =
extends finish
when
grdl : dom(coloring2) = graph
then
actl: coloring := coloring?2
end
Event colorla =
extends colorla
any
d
where
grdl: X — Y € graph
grd2: X+— Y ¢ dom(coloring?2)
grd3: Vz-(X+ z) — d ¢ coloring?
grd4 : Vz-(Y+ z) — d ¢ coloring?2
grd5 : dom(coloring2 U {X+ Y+ d,Y+— X+ d}) = graph
This is the last uncolored edge.
grd6 : pathl =0
grd7 : stage=1
then
actl: coloring2 := coloring2 U{X— Y~ d,Y+— X+ d}
actd: fan: =
We remove the fan.
act3: 1:=0
actb: stage :=3
end
Event colorib =
extends colorib
any
d
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X2
Y2
where

grdl :
grd2:
grd3 :
grd4 :
grd5 :
grd6 :

then

actl:
act2:
act3:
actd :

So here is our next edge to be colored.

X+— Y € graph

X +— Y ¢ dom(coloring?)

Vz-(X — z) — d ¢ coloring?2

Vz-(Y +— z) — d ¢ coloring?2

X2+ Y2 € graph \ dom(coloring2 U {X — Y+ d,Y — X — d})
stage =1

coloring?2 := coloring2 U{X — Y~ d,Y — X +— d}
X:=X2

Y:=Y2

fan:= {1 — Y2}

The fan is initialized with the new value of Y.

acth:
act6 :
act7 :
act8:

1:=1

cdpath := {0 — X2}

pathl =0

d_:|Vz-(Y2+— z+— d) ¢ coloring2 U {X— Y+ d,Y — X+ d}

We need to find a new d.

act9:

end

stage := 3

Event colormove =
extends colormove

when

grdl :
grd3:
grd4 :
grdb :
grde6 :

then
actl

X +— Y € graph
X +— Y ¢ dom(coloring?)

1>2
pathl =0
stage =1

: coloring2 := ({X — fan(2),fan(2) — X} <9 coloring2) U {X — Y —

coloring2(X — fan(2)),Y — X — coloring2(X — fan(2))}

act2:
act3:

Y := fan(2)
fan:= (An'ne€1..1—1|fan(n+ 1))

The fan is updated afterwards.

actéd :

end

1:=1-1

Event invertpath_k =
extends invertpath_k

any
k
where

Fan edge with color d

grdl6 : pathl >0

grd9 :

1eNy

grdll: kel..1-1
grd10: (X +— fan(k+ 1) +— d_) € coloring?2
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grd15 : Vz-(cdpath(pathl) — z +— c_ € coloring2 V cdpath(pathl) — z +— d_ €
coloring?2) = (z = cdpath(pathl — 1))
This ensures that the cd-path is already fully calculated.
grdl7 : stage = 2
then
actl: coloring2 := {(y — z — &')|de-(y — z — e) € coloring2 A (((y €
ran(cdpath)Vz € ran(cdpath))A((e =d_-Ae' =c)V(e=c.ANe'=d )V (e#
d_ANe#c_ Ne=¢)))V(y ¢ ran(cdpath) A z ¢ ran(cdpath) A e’ =e))}
act2: 1,fan : |(fan(k) € ran(cdpath) =1’ = 1 A fan’ = fan) A (fan(k) ¢
ran(cdpath) =1 =k A fan’ = 1 ..k < fan)
act3: cdpath := {0 — X}
act4d: pathl :=0
actb: co:=d_
act6: stage =1
end
Event extendfan =
Fan is extended first, as long as d_ is not c_ and it can be extended
extends extendfan
any
z
where
grdd: 1€ Ny
grdl: z ¢ ran(fan)
grd2 : X+ z € dom(coloring?)
grd3: Vw-Vd-fan(l) — w+ d € coloring2 = d # coloring2(X — z)
grd5 : pathl =0
grd7 : stage =3
then
actl: 1:=1+1
act2: fan —fanU{l+1»—>z}
act3: d_:|Vw-z— wr d ¢ coloring?
We need to update d, the free color of the last node on the fan.
end

Event extendcdpath =
cd-path is calculated if fan is maximal and c_ is not d_
extends extendcdpath
any
z
where
grdl: ze€V
grd2 : z ¢ ran(cdpath)
grd3: cdpath(pathl) — z + c_ € coloring2 V cdpath(pathl) — z +— d_ €
coloring?2
grd4 : Vz-X+ z +— c_¢ coloring?2
grd7 : stage =2
grd5: c.#d-
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then
actl: cdpath := cdpath U {pathl + 1 > z}
act2: pathl :=pathl +1
end
Event fan_done =
extends fan_done
when
grdl: 1 e Ny
grd2: —(3z-(z ¢ ran(fan) A X — z € dom(coloring2) A Vw-Vd-fan(l) — w+— d €
coloring2 = d # coloring2(X — z)))
grd3: pathl =0
grd4 : stage =3
then
actl: c_:|Vz:X— z+> c ¢ coloring?
act2: stage:=2
end
Event noinvertpath =
extends noinvertpath
when
grd2: 1 e Ny
grdd : Vz-X+ z+> d_¢ coloring?
d is free on X, so no path to build.
grd5: —(3z-(z ¢ ran(fan) A X — z € dom(coloring2) A (Vw-Vd-fan(l) —w—d €
coloring2 = d # coloring2(X — z))))
This ensures that the fan is maximal.
grdl : stage =2
then
actd: c.:=d_
If the fan is maximal and d free on X, then the cd-path is empty and we conclude
that d is free on X.
actl: stage:=1
end
END
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