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Abstract
We prove that the Call Arity analysis and transformation, as
implemented in the Haskell compiler GHC, is safe, i.e. does not
impede the performance of the program. We formalized syn-
tax, semantics, the analysis and the transformation in the in-
teractive theorem prover Isabelle to obtain a machine-checked
proof and hence a level of rigor rarely obtained for compiler
optimization safety theorems. The proof is modular and intro-
duces trace trees as a suitable abstraction in abstract cardinality
analyses. We discuss the breadth of the formalization gap.

Categories and Subject Descriptors D.1.1 [Programming
Techniques]: Applicative (Functional) Programming; D.3.4
[Programming Languages]: Processors—Optimization; F.3.2
[Logics and Meanings of Programs]: Semantics of Programming
Languages—Program analysis

Keywords Functional programming, arity analysis, cardi-
nality analysis, interactive theorem proving

1. Introduction
A lot of the fun in working on compilers, especially those that
are actively used, lies in coming up with clever analyses and
transformations that make the compiler produce better code.
Such developments are regularly the topic of well-received
academic publications. The emphasis in such papers tends
to be on the empirical side – awesome benchmark results,
elegant implementations, real-world impact.

A more formal, theoretical treatment is, however, not al-
ways given. Sometimes, a proof of functional correctness is in-
cluded, which shows that the transformation will not change
the meaning of the program. But for an optimization, we not
only care about its functional correctness but also that the
transformed program does not exhibit reduced performance.
This operational property, here called safety (following [11]), is
invisible to the semantics commonly employed in correctness
proofs.

And even if a proof of safety is given, this is rarely per-
formed in a machine-verified way, which would provide the
highest level of assurance on the correctness of the proof.
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In this work, we went all the way: We looked at the Call
Arity analysis, formalized it in the interactive theorem prover
Isabelle and created a machine-checked proof not only of
functional correctness, but also that the performance of the
transformed program is not worse than the original one’s.

The purpose of an arity analysis is to detect when function
definitions can be eta-expanded to take more arguments at
once, which allows the compiler to generate more efficient
code when calling such a function. Call Arity [5], which was
recently added to GHC, combines an arity analysis with a
novel cardinality analysis based on co-call graphs to gain
more precision in the presence of recursion. This precision is
required to effectively allow foldl and related combinators to
take part in list fusion.

The cardinality analysis, which determines how often a
function or a thunk is called, is required to eta-expand a thunk,
as that is only safe if the thunk is called at most once. If the
cardinality analysis were wrong and we would eta-expand a
thunk that is called multiple times, we would lose the benefits
of sharing and suddenly repeat work.

A correctness proof with regard to a standard denotational
semantics would not rule that out! A more detailed semantics
is required instead. We use an abstract machine with an
explicit heap to prove that the number of heap allocations
does not increase by transforming the program, and explain
why this is a suitable criterion for safety.

Our contributions are:
• We provide a rigorous formal description of Call Arity and

prove that it is safe, i.e. the transformed program does not
perform more allocations than the original program.

• Our proof is modular. We cleanly separate the arity analy-
sis part (Sec. 4) from the cardinality part, and divide the
cardinality part into a three-stage refinement proof (Sec. 5).
This gives greater insight into their interaction, and pro-
vides reusable components for similar proofs.

• We introduce infinite trace trees (Sec. 5.2) as a suitable
domain for an abstract cardinality analysis.

• We formalized a suitable semantics akin to Sestoft’s mark 1
abstract machine, the Call Arity analysis, the transforma-
tion and the safety proof in the theorem prover Isabelle.
This gives us very high assurance of the correctness of this
work, but also provides a data point on the question of
how feasible machine-checked proofs of compiler transfor-
mations currently are (Sec. 6).

• Finally, and of more general interest, we critically discuss
the formalization gap left by our formalization and find
that the gap is not always bridgeable by meta-arguments.
In particular, we explain how the interaction of Call Arity
with other components of the compiler effected a serious
and intricate bug, despite the proof of correctness (Sec. 6.1).



2. Overview and example
The remainder of the paper will necessarily be quite formal.
In order to give a better intuition and overview, we first look
at a small example in this section, and introduce the syntax,
semantics, transformations and analyses more rigorously in
the subsequent sections. A more elaborate motivation and
explanation of the Call Arity analysis, including its effect on
list fusion and benchmark results, can be found in [5].

2.1 From the example. . .

Consider the following Haskell program:

foo :: Int→ Int
foo a = let t1, t2 :: Int→ Int

t1 = f1 a
t2 = f2 a

in let g :: Int→ Int→ Int
g x = if p x then t1 else g (x + t2 x)

in g 1 2

Here two thunks, t1 and t2, are called from a recursive inner
function g. They are thunks, because their definition is not in
head normal form, so upon their first call, f1 resp. f2 will be
called with the argument a, and the resulting value will be
stored and used in later invocations of t1 resp. t2.

As it stands, the function invocation g 1 2 will be compiled
to rather inefficient code: The caller will have to evaluate g 1,
which creates and returns a function closure. This will be
analyzed for the number of arguments it expects, and only
then 2 will be pushed onto the stack and the closure will be
entered [19]. If g would take two arguments directly, the call
to g would simply push 1 and 2 onto the stack and execute
the code for g, or even pass them in registers, which would
be much faster.

The same reasoning applies to t1 and t2. Generally, we
want to eta-expand a definition to match the number of
arguments it is called with.

We can actually eta-expand g to take two parameters: It is
called with two arguments in the first place, and – assuming g
is always called with two arguments – it calls itself with two
arguments as well. So we may transform the definition of g to

g x y = (if p x then t1 else g (x + t2 x)) y,

which would then be further simplified by the compiler to

g x y = if p x then t1 y else g (x + t2 x) y.

We now see that both t1 and t2 are always called with one
argument. Can we eta-expand their definitions to t1 y = f1 a y
resp. t2 y = f2 a y? It depends!

If we eta-expand t2 then the evaluation of f2 a will no
longer be shared between multiple invocations of t2. As we
do not know anything about f2 we have to pessimistically
assume this to be an expensive operation that we must not
suddenly repeat. We expect t2 to be called multiple times here,
so a conservative arity analysis must not eta-expand it.

For t1, we can do better: It is definitely called at most once,
so it is safe to eta-expand its definition. That is why a good
arity analysis needs the help of a precise cardinality analysis.
How would that analysis figure that out? The body of g on its
own calls both t2 and t1 at most once, so having cardinality
information for subexpressions is not enough to attain such
precision, and our cardinality analysis needs to keep track of
more.

The Call Arity analysis comes with a cardinality analysis
based on the notion of co-call graphs. In these (non-transitive)
graphs edges connect variables that might be called together.

Looking at the definition of g, we see that p is called
together with all the other variables, and g is called together
with t2. Thus, the resulting graph is gt2pt1 .
In particular, we can see that g and t1 are not going to be
called together.

Together with the fact that the body of the let-binding calls
g at most once, we can describe the calls originating from the
inner let with the graph t2pt1 : Both g and t2 can

be called multiple times, but the absence of a loop at t1 implies
the desired cardinality information: t1 is called at most once.

2.2 . . . to the general case

This explanation might have been convincing for this example,
but how would we prove that the analysis and transformation
are safe in general?

In order to do so, we first need a suitable semantics. The ele-
gant standard denotational semantics for functional programs
are unfortunately too abstract and admit no observation of
program performance. Therefore, we use a standard small-
step operational semantics similar to Sestoft’s mark 1 abstract
machine. It defines a relation (Γ, e, S)⇒∗ (Γ′, e′, S′) between
configurations consisting of a heap, a control, i.e. the current
expression under evaluation, and a stack (Sec. 3).

With that semantics, we could follow Sands [21] and
measure performance by counting evaluation steps. But that
is too finegrained: Our eta-expansion transformation causes
additional beta-reductions to be performed during evaluation,
and without subsequent simplification – which does happen
in a real compiler, but which we do not want to include in the
proof – these increase the number of steps in our semantics.

Therefore, we measure the performance by counting the
number of allocations performed during the evaluation. This
is sufficient to detect accidental duplication of work, as shown
by this gedankenexperiment: Consider a program e1, which is
transformed to e2, and a subexpression e of e1 that also occurs
in e2. By replacing e with let x1 = x1,. . . , xn = xn in e, where
the variables are fresh, we can force each evaluation of e to
perform at least n allocations, for an arbitrary large choice
of n. So unless e2 evaluates e at most as often as e1 does, we
can choose n large enough to make e2 allocate more than e1.
Conversely, if our criterion holds, we can conclude that the
transformation does not duplicate work.

This measure is also realistic: When working on GHC,
the number of bytes allocated by a benchmark or a test
case is the prime measure that developers observe to detect
improvements and regressions, as in practice, it correlates
very well with execution time and memory usage, while being
more stable across differing environments.

A transformation is safe in this sense if the transformed
program performs no more allocations than the original
program.

The arity transformation eta-expands expressions, so in
order to prove it safe, we need to identify conditions when
eta-expansion itself is safe, and ensure that these conditions
are always met.

A sufficient condition for the safety of an n-fold eta-
expansion of an expression e is that whenever e is evaluated,
the top n elements on the stack are arguments, as stated in
Lemma 1. The safety proof for the arity analysis (Lemma 2)
keeps track of some invariants during the evaluation which
ensure that we can apply Lemma 1 whenever an eta-expanded
expression is about to be evaluated.

The proof is first performed for a naive arity analysis
without a cardinality analysis, before formally introducing the



concept of a cardinality analysis in Sec. 5. We do not simply
prove safety of the co-call graph based analysis directly, but
split it up into a series of increasingly concrete proofs, each
building on the result of the previous, for two reasons:

• It is nice to separate various aspects of the proof (i.e.
the interaction of the arity analysis with the cardinality
analysis; the gap between the steps of the semantics and
the structurally recursive nature of the analysis; different
treatments of recursive and non-recursive bindings) into
individual steps, but more importantly

• while the co-call graph data structure is sufficiently expres-
sive to implement the analysis, it is an unsuitable abstrac-
tion for the safety proof, as it cannot describe the recursion
patterns of a heap, where some expressions are calling each
other in a nice, linear fashion among other, more complex
recursion patterns.
In the first refinement, the cardinality analysis is com-

pletely abstract: Its input is the whole configuration and its
result is simply which variables on the heap are going to be
called more than once. In our example, after t1, t2 and g have
been put on the heap, this analysis would find out that t2 and
g are called more than once, but not t1. We give conditions
(Definition 6) when an arity analysis using such a cardinality
analysis is safe (Lemma 3).

The next refinement assumes a cardinality analysis that
now looks just at expressions, not whole configurations, and
returns a much richer analysis result: A trace tree, which is a
(possibly) infinite tree where each path corresponds to one
possible execution and the edges are labeled by the variables
called during that evaluation.

In our example, the tree corresponding to the right-hand-
side of g, namely

g
t2
t1p

can be combined with the very simple tree g from the
body of the inner let to form the infinite tree

g
t2
t1pg

t2
t1pg

t2
t1pg

which describes the overall sequence of calls. Clearly, on every
possible path, t1 is called at most once.

Given such a trace tree analysis, an abstract analysis as
described in the first refinement can be implemented: The
trees describing the expressions in a configuration (on the
heap, as the control or in the stack) can be combined to a
tree describing the behavior of the whole configuration. This
calculation, named s in Sec. 5.2, is quite natural for trace trees,
but would be hard to define on co-call graphs only. From
that tree we can determine the cardinalities of the individual
variables. We specify conditions on the trace tree analysis
(Definition 9) and in Lemma 4 show them to be sufficient to
fulfill the specification of the first refinement.

The third and final refinement assumes an analysis that
returns a co-call graph for each expression. Co-call graphs can
be seen as compact approximations of trace trees, with edges
between variables that can occur on the same path in the tree.
The specification in Definition 10 is shown in Lemma 5to be
sufficient to fulfill the specification of the second refinement.

Eventually, we give the definition of the real Call Arity
analysis in Sec. 5.4, and as it fulfills the specification of the final
refinement, the desired safety theorem (Theorem 1) follows.

The following three technical sections necessarily omit
some detail, especially in the proofs. But since the machine-

x, y, z : Var variables

e, v : Expr expressions

e ::= x variable

| e x application

| λx. e lambda abstraction

| Ct | Cf constructor

| e ? et : ef case analysis

| let Γ in e mutually recursive bindings

Γ, ∆ : Var ⇀ Expr heaps, bindings

Figure 1. A simple lambda calculus

checked formalization exists, such omissions needn’t cause
worry. The full Isabelle code is available at [4]; the proof
document contains a table that maps the definitions and
lemmas of this paper to the corresponding entities in the
Isabelle development.

3. Syntax and semantics
Call Arity operates on GHC’s intermediate language Core,
but that is too large for our purposes: The analysis completely
ignores types, so we would like to work on an untyped
representation.

Additionally, we do not need the full expressiveness of
algebraic data types. We use booleans (Ct, Cf ) with an if-then-
else construct as representatives for case analysis on data
types. The “other” interesting feature of data constructors, i.e.
that they are values that can contain possibly unevaluated
code, can already be observed with function closures.

Our syntax is given in Figure 1. The bindings of a let are
represented as finite maps from variables to expressions; the
same type is used to describe a heap.

Like Launchbury [16] and others [12, 13, 25], we require
application arguments to be variables. This ensures that all
bindings on the heap are created by a let and we do not
have to ensure separately that the evaluation of a function’s
argument is shared.

We denote the set of free variables of an expression e (or
another object containing expressions) with fv(e), and e[x := y]
is the expression e with every free occurrence of the variable
x replaced by y. The predicate isVal(e) holds iff e is a lambda
abstraction or a constructor.

A heap Γ is a partial map from variable names to expres-
sions. The set dom Γ := {x | (x 7→ e) ∈ Γ} contains all names
bound in Γ, while thunks Γ := {x | (x 7→ e) ∈ Γ, ¬ isVal(e)}
contains just those that are bound to thunks. Note that we
consider heap-bound names to be free, i.e. dom Γ ⊆ fv Γ.

The proper treatment of names is the major technical
hurdle when rigorously formalizing anything related to the
lambda calculus. We employ Nominal Logic [27] here, so the
lambda abstractions and let-bindings are proper equivalency
classes, i.e. λx. x = λy. y.

A configuration (Γ, e, S) consists of the heap Γ, the control e
and the stack S. The stack is constructed from

• the empty stack, [],
• arguments, written $x·S and put on the stack during the

evaluation of an application,
• update markers, written #x·S and put on the stack during

the evaluation of a variable’s right-hand-side, and



(Γ, e x, S)⇒ (Γ, e, $x·S) APP1

(Γ, λy. e, $x·S)⇒ (Γ, e[y := x], S) APP2

(x 7→ e) ∈ Γ =⇒ (Γ, x, S)⇒ (Γ \ x, e, #x·S) VAR1

isVal(e) =⇒ (Γ, e, #x·S)⇒ (Γ[x 7→ e], e, S) VAR2

(Γ, (e ? et : ef ), S)⇒ (Γ, e, (et : ef )·S) IF1

b ∈ {t, f} =⇒ (Γ, Cb, (et : ef )·S)⇒ (Γ, eb, S) IF2

dom∆ ∩ fv(Γ, S) = {} =⇒
(Γ, let ∆ in e, S)⇒ (∆ · Γ, e, S) LET

Figure 2. The operational semantics

• alternatives, written (e1 : e2)·S and put on the stack during
the evaluation of the scrutinee of an if-then-else construct.

Throughout this work we assume all configurations to be good,
i.e. dom Γ and #S := {x | #x ∈ S} are disjoint and the update
markers on the stack are distinct.

Following Sestoft [25], we define the semantics via the
single step relation⇒, defined in Figure 2. We write⇒∗ for
the reflexive transitive closure of this relation, which describes
a particular execution.

In the interest of naming hygiene, the names for the new
bindings in the LET rule have to be fresh with regard to what
is already present on the heap and stack, as ensured by the
side-condition. An interesting side-effect is that this rule, and
hence the whole semantics, is not deterministic, as there is an
infinite number of valid names that can be used when putting
the bindings onto the heap. Consequently, our proofs cannot
take short-cuts using determinism, which would be a problem
if “real” nondeterminism were added to the formalism.

Note that the semantics takes good configurations to good
configurations.

This semantics is equivalent to Launchbury’s natural se-
mantics [16], which in turn is correct and adequate with re-
gard to a standard denotational semantics; these proofs are
machine-verified as well [3].

3.1 Arities and Eta-Expansion

Eta-expansion replaces an expression e by (λx. e x). The n-fold
eta-expansion is described by En(e) := (λz1 . . . zn. e z1 . . . zn),
where the zi are distinct and fresh with regard to e. We thus
consider an expression e to have arity α ∈N if we can replace
it by Eα(e) without negative effect on the performance.

Other analyses determine the arity based on the definition
of e, i.e. its internal arity [28]. Here, we treat e as a black box
and instead look at its context to determine its external arity.
For that, we can give an alternative definition: An expression
e has arity α if upon every evaluation of e, there are at least α
arguments on the stack.

If an expression has arity α, then it also has arity α′ for
α′ ≤ α; every expression has arity 0. Our lattice therefore is:

· · · < 3 < 2 < 1 < 0.

For convenience, we set 0− 1 = 0. By convention, ᾱ is a partial
map from variable names to arities, and α̇ is a list of arities.

4. Arity analyses
An arity analysis is thus a function that, given a binding (Γ, e),
consisting of variable names bound to right-hand-sides in Γ
and the body e, determines the arity of each of the bound
expressions. It depends on the number α of arguments passed

to e and may return ⊥ for a name that is not called at all:

Aα(Γ, e) : Var→N⊥.

Given such an analysis, we can run it over a program and
transform it accordingly. We traverse the syntax tree, while
keeping track of the number of arguments passed:

Tα(x) = x
Tα(e x) = Tα+1(e) x

Tα(λx. e) = (λx.Tα−1(e))
Tα(Cb) = Cb for b ∈ {t, f}

Tα(e ? et : ef ) = T0(e) ?Tα(et) :Tα(ef )

Tα(let Γ in e) = let TAα(Γ,e)(Γ) in Tα(e)

The actual transformation happens at a binding, where
we eta-expand bound expressions according to the result of
the arity analysis. If the analysis determines that a binding is
never called, we simply leave it alone:

Tᾱ(Γ) =
[

x 7→
{

e if ᾱ(x) = ⊥
Eα(Tα(e)) if ᾱ(x) = α

}∣∣∣(x 7→ e) ∈ Γ
]
.

As motivated earlier, we consider an arity analysis A safe
if the transformed program does not perform more allocations
than the original program. A – technical – benefit of this
measure is that the number of allocations always equals the
size of the heap plus the number of update markers on the
stack, as no garbage collector is modeled in our semantics:

Definition 1 (Safe transformation) A program transforma-
tion T is safe if for every execution

([], e, [])⇒∗ (Γ, v, [])

with isVal(v), there is an execution

([],T(e), [])⇒∗ (Γ′, v′, [])

with isVal(v′) and | dom Γ′| ≤ | dom Γ|.
An arity analysis A is safe if the transformation T is safe.2

Specification We begin by stating sufficient conditions for
an arity analysis to be safe. In order to phrase the conditions,
we also need to know the arities an expression e calls its free
variables with, assuming it is itself called with α arguments:

Aα(e) : Var→N⊥

For notational simplicity, we define A⊥(e) := ⊥.
The specification consists of a few naming hygiene condi-

tions and an inequality for most syntactical constructs:

Definition 2 (Arity analysis specification)

domAα(e) ⊆ fv e (A-dom)
domAα(Γ, e) ⊆ dom Γ (Ah-dom)

z /∈ {x, y} =⇒ Aα(e[x := y]) z = Aα(e) z (A-subst)
x, y /∈ dom Γ =⇒

Aα(Γ[x := y], e[x := y]) = Aα(Γ, e) (Ah-subst)
[x 7→ α] v Aα(x) (A-Var)

Aα+1(e) t [x 7→ 0] v Aα(e x) (A-App)
Aα−1(e) \ {x} v Aα(λx. e) (A-Lam)

A0(e) tAα(et) tAα(ef ) v Aα(e ? et : ef ) (A-If)

AAα(Γ,e)(Γ) tAα(e) v Aα(Γ, e) tAα(let Γ in e)
(A-Let)

where Aα(Γ) :=
⊔ {A(α x)(e)

∣∣(x 7→ e) ∈ Γ
}

. 2



These conditions come quite naturally: An expression
should not report calls to names that it does not know about.
Replacing one variable by another should not affect the arity
of other variables. A variable, evaluated with a certain arity,
should report (at most) that arity.

In the rules for application and lambda abstraction we
keep track of the number of arguments. As we model a
forward analysis which looks at bodies before right-hand-
sides, we get no useful information on how the argument x in
an application e x is called by e.

In rule (A-If), the scrutinee is evaluated without arguments,
hence it is analyzed with arity 0.

The rule (A-Let) is a concise way to capture a few require-
ments. Note that, by (A-dom) and (Ah-dom), the domains of
Aα(Γ, e) and Aα(let Γ in e) are disjoint, i.e. Aα(Γ, e) contains
the information on how the names of the current binding are
called, whileAα(let Γ in e) informs us about the free variables.
The left-hand side contains all possible calls, both from the
body of the binding and from each bound expression. These
are analyzed with the arity reported by Aα(Γ, e). The occur-
rence of Aα(Γ, e) on both sides of the inequality anticipates
the fixed-point iteration in the implementation of the analysis.

Definition 2 suffices to prove functional correctness, i.e.

JT0(e)K = JeK,

holds, but not safety, as the issue of thunks is not touched
upon yet. Without the aid of a cardinality analysis, an arity
analysis has to simply give up when it comes across a thunk:

Definition 3 (No-cardinality analysis specification)

x ∈ thunks Γ =⇒ Aα(Γ, e) x = 0 (Ah-thunk)
2

Safety The safety of an eta-expanding transformation rests
on the simple observation that, given enough arguments on
the stack, an eta-expanded expression evaluates to the original
expression:

Lemma 1 (Γ, Eα(e), $x1 · · · $xα·S)⇒∗ (Γ, e, $x1 · · · $xα·S) 2

PROOF By APP2, invoked α times, followed by APP1, α times.�

So the safety proof for the whole transformation now just
has to make sure that whenever we evaluate an eta-expanded
value, there are enough arguments on top of the stack. Let
args(S) denote the number of arguments on top of the stack.

During evaluation, we need to construct the transformed
configurations. Therefore, we need to keep track of the arity
argument to each contained expressions: those on the heap,
the control and those in alternatives on the stack. Together,
these arguments form an arity annotation written (ᾱ, α, α̇).
Given such an annotation, we can transform a configuration:

T(ᾱ,α,α̇)((Γ, e, S)) = (Tᾱ(Γ),Tα(e), Ṫα̇(S))

where the stack is transformed by

Ṫα·α̇((et : ef )·S) = (Tα(et) : Tα(ef ))·Ṫα̇(S)

Ṫα̇($x·S) = $x·Ṫα̇(S)

Ṫα̇(#x·S) = #x·Ṫα̇(S)

Ṫα̇([]) = [].

While carrying the arity annotation through the evaluation
of our programs, we need to ensure that it stays consistent
with the current configuration.

Definition 4 (Arity annotation consistency) An arity anno-
tation is consistent with a configuration, written (ᾱ, α, α̇) .
(Γ, e, S), if

• dom ᾱ ⊆ dom Γ ∪ #S,
• args(S) v α,
•
(
Aα(Γ) tAα(e) t Ȧα̇(S)

)∣∣
dom Γ∪#S v α, where

Ȧ[]([]) := ⊥
Ȧα·α̇((et : ef )·S) := Aα(et) tAα(ef ) t Ȧα̇(S)

Ȧα̇($x·S) := [x 7→ 0] t Ȧα̇(S)

Ȧα̇(#x·S) := [x 7→ 0] t Ȧα̇(S), and

• α̇ . S, defined as

[] . []

α·α̇ . (et : ef )·S ⇐⇒ α̇ . S ∧ args(S) v α

α̇ . $x·S ⇐⇒ α̇ . S
α̇ . #x·S ⇐⇒ α̇ . S. 2

As this definition does not consider the issue of thunks, we
extend it to

Definition 5 (No-cardinality arity annotation consistency)
defined as (ᾱ, α, α̇) .N (Γ, e, S), iff (ᾱ, α, α̇) . (Γ, e, S) and
ᾱ x = 0 for all x ∈ thunks Γ. 2

We do not include this requirement in definition of . as we
extend it differently when we add a cardinality analysis.

Clearly (⊥, 0, []) is a consistent annotation for an initial
configuration ([], e, []). We will take consistently annotated
configurations to consistently annotated configurations dur-
ing the evaluation – with one exception, which causes a minor
technical overhead: Upon evaluation of a variable x, its bind-
ing x 7→ e is always taken off the heap first, even when it is
already evaluated, i.e. isVal(e):

(Γ[x 7→ e], x, S)⇒ (Γ, e, #x·S)⇒ (Γ[x 7→ e], e, S)

We would not be able to prove consistency in the intermediate
state. To work around this issue, assume that rule VAR1 has
an additional constraint ¬ isVal(e) and that the rule

(x 7→ e) ∈ Γ, isVal(e) =⇒ (Γ, x, S) ⇒ (Γ, e, S) (VAR′1)

is added. This modification makes the semantics skip over
one step, which is fine (and closer to what happens in reality).

Lemma 2 Assume A fulfills the Definitions 2 and 3.
If we have (Γ, e, S) ⇒∗ (Γ′, e′, S′) and (ᾱ, α, α̇) .N (Γ, e, S),

then there exists an arity annotation (ᾱ′, α′, α̇′) with (ᾱ′, α′, α̇′) .N

(Γ′, e′, S′), and T(ᾱ,α,α̇)((Γ, e, S))⇒∗ T(ᾱ′ ,α′ ,α̇′)((Γ
′, e′, S′)). 2

PROOF by the individual steps of⇒∗. For APP1 we have

Aα+1(e) t Ȧα̇($x·S) = Aα+1(e) t [x 7→ 0] t Ȧα̇(S)

v Aα(e x) t Ȧα̇(S)

using (A-App) and the definition of Ȧ. So with (ᾱ, α, α̇) .N

(Γ, e x, S) we have (ᾱ, α + 1, α̇) .N (Γ, e, $x·S). Furthermore

T(ᾱ,α,α̇)((Γ, e x, S)) = (Tᾱ(Γ), (Tα+1(e)) x, Ṫα̇(S))

⇒ (Tᾱ(Γ),Tα+1(e), $x·Ṫα̇(S))
= T(ᾱ,α+1,α̇)((Γ, e, $x·S))

by rule APP1.
The other cases follow this pattern, where the inequalities

in Definition 2 ensure the preservation of consistency.



In case VAR1 the variable x is bound to a thunk. From
consistency we obtain ᾱ x = 0, so we can use E0(T0(e)) =
T0(e). Similarly, α = ᾱ x = 0 holds in case VAR2.

The actual eta-expansion is handled is case VAR′1: We have

args(Ṫα̇(S)) = args(S) v α v Aα(x) x v ᾱ x,

from consistency and (A-Var) and hence

T(ᾱ,α,α̇)((Γ, x, S))⇒ (Tᾱ(Γ), Eᾱ x(Tᾱ x(e)), Ṫα̇(S)) { VAR′1 }

⇒∗(Tᾱ(Γ),Tᾱ x(e), Ṫα̇(S)) { by Lemma 1 }
= T(ᾱ,ᾱ x,α̇)((Γ, e, S)). �

The main take-away of this lemma is the following corol-
lary, which states that the transformed program performs the
same number of allocations as the original program.

Corollary 1 The arity analysis is safe: If ([], e, []) ⇒∗ (Γ, v, []),
then there exists Γ′ and v′ such that ([],T0(e), []) ⇒∗ (Γ′, v′, [])
where Γ and Γ′ contain the same number of bindings. 2

PROOF We have (⊥, 0, []) .N ([], e, []). Lemma 2 gives us ᾱ,
α and α̇ so that T(⊥,0,[])(([], e, [])) ⇒∗ T(ᾱ,α,α̇)((Γ, v, [])) and
Tᾱ(Γ) binds the same names as Γ. �

4.1 A concrete arity analysis

So far, we have a specification for an arity analysis and a proof
that every analysis that fulfills the specification is safe.

One possible implementation is the trivial arity analysis,
which does not do anything useful and simply returns the
most pessimistic result: Aα(e) := [x 7→ 0 | x ∈ fv e] and
Aα(Γ, e) := [x 7→ 0 | x ∈ dom Γ].

A more realistic arity analysis is defined by

Aα(x) := [x 7→ α]

Aα(e x) := Aα+1(e) t [x 7→ 0]
Aα(λx. e) := Aα−1(e) \ {x}

Aα(e ? et : ef ) := A0(e) tAα(et) tAα(ef )
Aα(Cb) := ⊥ for b ∈ {t, f}

Aα(let Γ in e) :=

(µᾱ. Aᾱ(Γ) tAα(e) t [x 7→ 0 | x ∈ thunks Γ]) \ dom Γ

and

Aα(Γ, e) :=

(µᾱ. Aᾱ(Γ) tAα(e) t [x 7→ 0 | x ∈ thunks Γ])
∣∣
dom Γ

where (µᾱ. . . .) denotes the least fixed point, which exists as
the involved operations are continuous and monotone in ᾱ.
Moreover, the fixed point can be found in a finite number of
steps by iterating from⊥, as the carrier of ᾱ is bounded by the
finite set fv Γ ∪ fv e, and the pointwise partial order on arities
has no infinite ascending chains. As this ignores the issues of
thunks, it corresponds to the analysis described by Gill [10].

This implementation fulfills Definition 2 and Definition 3,
so by Corollary 1, it is safe.

5. Cardinality analyses
The previous section proved the safety of a straight-forward
arity analysis. But it was severely limited by not being able to
eta-expand thunks, which is desirable in practice.

5.1 Abstract cardinality analysis

So the arity analysis needs an accompanying cardinality analy-
sis which prognoses how often a bound variable is going to

be evaluated: This is modeled as a function

Cα(Γ, e) : Var→ Card

where Card is the three element lattice

⊥ < 1 < ∞,

corresponding to “not called”, “called at most once” and “no
information”, respectively. We use γ for an element of Card
and γ̄ for a mapping Var→ Card.

The expression γ̄− x, which subtracts one call from the
prognosis, is defined as

(γ̄− x) y =

{
⊥ if y = x and γ̄ y = 1
γ̄ y otherwise.

Specification We start with a very abstract specification for
a safe cardinality analysis and prove that an arity transforma-
tion using it is still safe. We stay oblivious in how the analysis
works and defer that to the next refinement step in Section 5.2.

For the specification we not only need the local view on
one binding, as provided by Cα(Γ, e), but also a prognosis on
how often each variable is called by a complete and arity-
annotated configuration:

C(ᾱ,α,α̇)((Γ, e, S)) : Var→ Card

Definition 6 (Cardinality analysis specification) The cardi-
nality prognosis and cardinality analysis fulfill some obvious
naming hygiene conditions:

dom Cα(∆, e) = domAα(∆, e) (Ch-dom)
dom C(ᾱ,α,α̇)((Γ, e, S)) ⊆ fv(Γ, e, S) (C-dom)

ᾱ
∣∣
dom Γ = ᾱ′

∣∣
dom Γ =⇒
C(ᾱ,α,α̇)((Γ, e, S)) = C(ᾱ′ ,α,α̇)((Γ, e, S)) (C-cong)

ᾱ x = ⊥ =⇒
C(ᾱ,α,α̇)((Γ, e, S)) = C(ᾱ,α,α̇)((Γ \ {x}, e, S))

(C-not-called)

Furthermore, the cardinality analysis is likewise a forward
analysis and has to be conservative about function arguments:

$x ∈ S =⇒ [x 7→ ∞] v C(ᾱ,α,α̇)((Γ, e, S)) (C-args)

The prognosis may ignore update markers on the stack:

C(ᾱ,α,α̇)((Γ, e, #x·S)) v C(ᾱ,α,α̇)((Γ, e, S)) (C-upd)

An imminent call is prognosed:

[x 7→ 1] v C(ᾱ,α,α̇)((Γ, x, S)) (C-call)

Evaluation improves the prognosis: Note that in (C-Var1) and
(C-Var′1), we account for the call to x with the − operator.

C(ᾱ,α+1,α̇)((Γ, e, $x·S)) v C(ᾱ,α,α̇)((Γ, e x, S)) (C-App)

C(ᾱ,α−1,α̇)((Γ, e[y := x], S)) v C(ᾱ,α,α̇)((Γ, λy. e, $x·S))
(C-Lam)

(x 7→ e) ∈ Γ, ¬ isVal(e) =⇒
C(ᾱ,ᾱ x,α̇)((Γ \ {x}, e, #x·S)) v C(ᾱ,α,α̇)((Γ, x, S))− x

(C-Var1)
(x 7→ e) ∈ Γ, isVal(e) =⇒

C(ᾱ,ᾱ x,α̇)((Γ, e, S)) v C(ᾱ,α,α̇)((Γ, x, S))− x
(C-Var′1)

isVal(e) =⇒
C(ᾱ,0,α̇)((Γ[x 7→ e], e, S)) v C(ᾱ,0,α̇)((Γ, e, #x·S))

(C-Var2)



C(ᾱ,0,α·α̇)((Γ, e, (et : ef )·S)) v C(ᾱ,α,α̇)((Γ, e ? et : ef , S))
(C-If1)

b ∈ {t, f} =⇒
C(ᾱ,α,α̇)((Γ, eb, S)) v C(ᾱ,0,α·α̇)((Γ, Cb, (et : ef )·S))

(C-If2)

The specification for the let-bindings connects the arity analy-
sis, the cardinality analysis and the cardinality prognosis:

dom∆ ∩ fv(Γ, S) = {}, dom ᾱ ⊆ dom Γ ∪ #S =⇒
C(Aα(∆,e)tᾱ,α,α̇)((∆ · Γ, e, S)) v

Cα(∆, e) t C(ᾱ,α,α̇)((Γ, let ∆ in e, S)) (C-Let)

Finally, we need an equivalent to Definition 3 that now
restricts the arity analysis only for thunks that might be called
more than once:

x ∈ thunks Γ, Cα(Γ, e) x = ∞ =⇒ Aα(Γ, e) x = 0
(Ah-∞-thunk)

2

Safety The safety proof proceeds similarly to the one for
Lemma 2. But now we are allowed to eta-expand thunks
that are called at most once. This has considerable technical
implications for the proof:

• An eta-expanded expression is a value, so in the trans-
formed program, VAR2 occurs immediately after VAR1. In
the original program, however, an update marker stays on
the stack until the expression is evaluated to a value, and
then VAR2 fires without a correspondence in the evalua-
tion of the transformed program. In particular, the update
marker can interfere with uses of Lemma 1.

• Because the eta-expanded expression is a value, it stays
on the heap as it is, whereas in the original program, it is
first evaluated. Evaluation can reduce the number of free
variables of the expression, so subsequent choices of fresh
variables in LET1 in the original evaluation might not be
suitable in the evaluation of the transformed program.

A more complicated variant of Lemma 1 and carrying a vari-
able renaming around throughout the proof might solve these
problems, but would complicate it too much. We therefore ap-
ply a small trick and simply allow unwanted update markers
to disappear, by defining a variant of the semantics:

Definition 7 (Forgetful semantics) The relation ⇒# is de-
fined by

(Γ, e, S)⇒ (Γ′, e′, S′) =⇒ (Γ, e, S)⇒# (Γ′, e′, S′).

and

(Γ, e, #x·S)⇒# (Γ, e, S) DROPUPD

2

This way, a one-shot binding can disappear completely
after it has been called, making it easier to relate the original
program to the transformed program. Because⇒# contains
⇒, Lemma 1 holds here as well. Afterwards, and outside
the scope of the safety proof, we will recover the original
semantics from the forgetful semantics.

In the proof we keep track of the set of removed bindings
(named r), and write (Γ, e, S) − r := (Γ \ r, e, S − r) for the
configuration with bindings from the set r removed. The stack
(S− r) is S without update markers #x where x ∈ r.

We also keep track of γ̄ : Var→ Card, the current cardinal-
ities of the variables on the heap:

Definition 8 (Cardinality arity annotation consistency) We
write (ᾱ, α, α̇, γ̄, r) .C (Γ, e, S), iff

• the arity information is consistent, (ᾱ, α, α̇) . (Γ, e, S)− r,
• dom ᾱ = dom γ̄,
• the cardinality information is correct, C(ᾱ,α,α̇)((Γ, e, S)) v γ̄,
• many-called thunks are not going to be eta-expanded, i.e.

ᾱ x = 0 for x ∈ thunks Γ with γ̄ x = ∞ and
• only bindings that are not going to be called (γ̄ x = ⊥) are

removed, i.e. r ⊆ (dom Γ ∪ #S)− dom γ̄. 2

Lemma 3 Assume A and C fulfill the specifications in Defini-
tions 2 and 6.

If (Γ, e, S) ⇒∗ (Γ′, e′, S′) and (ᾱ, α, α̇, γ̄, r) .C (Γ, e, S) ,
then there exists (ᾱ′, α′, α̇′, γ̄′, r′) such that (ᾱ′, α′, α̇′, γ̄′, r′) .C

(Γ′, e′, S′), and T(ᾱ,α,α̇)((Γ, e, S)− r)⇒∗# T(ᾱ′ ,α′ ,α̇′)((Γ
′, e′, S′)−

r′). 2

The lemma is an analog to Lemma 2. The main difference,
besides the extra data to keep track of, is that we produce
an evaluation in the forgetful semantics, with some bindings
removed.

PROOF by the individual steps of ⇒∗. The preservation of
the arity annotation consistency in the proof of Lemma 2
can be used here as well. Note that both the arity annotation
requirement and the transformation are applied to (Γ, e, S)− r,
so this goes well together. The correctness of the cardinality
information (the second condition in Definition 8) follows
easily from the inequalities in Definition 6.

We elaborate only on the interesting cases:
Case VAR1: We cannot have γ̄ x = ⊥ because of (C-call).

If γ̄ x = ∞ we get ᾱ x = 0, as before, and nothing
surprising happens.

If γ̄ x = 1, we know that this is the only call to x, so we set
r′ = r ∪ {x}, γ̄′ = γ̄− x and use DROPUPD to get rid of the
mention of #x on the stack.
Case VAR2: If x /∈ r, proceed as before. If x ∈ r, then
the transformed configurations are identical and the ⇒∗#
judgment follows from reflexivity. �

Corollary 2 The cardinality based arity analysis is safe for closed
expressions, i.e. if fv e = {} and ([], e, [])⇒∗ (Γ, v, []) then there
exists Γ′ and v′ such that ([],T0(e), [])⇒∗ (Γ′, v′, []) where Γ and
Γ′ contain the same number of bindings. 2

PROOF We need fv e = {} to have C⊥,0,[](([], e, [])) = ⊥, so
that (⊥, 0, [],⊥, []) .C ([], e, []) holds. Now Lemma 2 gives us ᾱ,
α, α̇ and r so that T(⊥,0,[])(([], e, []))⇒∗# T(ᾱ,α,α̇)((Γ, v, [])− r).

As the forgetful semantics only drops unused bind-
ings, but does not otherwise behave any different than
the real semantics, a technical lemma allows us to recover
T(⊥,0,[])(([], e, []))⇒∗ T(ᾱ,α,α̇)((Γ

′, v, [])) for a Γ′ where Tᾱ(Γ)−
r = Γ′ − r′. As r ⊆ Γ and r′ ⊆ Γ′, this concludes the proof of
the corollary: Γ, Tᾱ(Γ) and Γ′ all bind the same variables. �

5.2 Trace tree cardinality analysis

In the second refinement, we look – still quite abstractly –
at the implementation of the cardinality analysis. For the
arity information, the type of the result required for the
transformation (Var→N⊥) was sufficiently rich to be used
in the analysis as well. This is unfortunately not the case for
the cardinality analysis: Even if we know that an expression
calls x and y each at most once, this does not tell us whether



these calls can occur together (as in e x y) or whether they are
exclusive (as in e ? x : y).

So we need a richer type that captures the future calls of
an expression, can distinguish different code paths and maps
easily to Var → Card: The type TTree of (possibly infinite)
trees, where each edge is labeled with variable name, and a
node has at most one outgoing edge for each variable name.
The paths in the tree correspond to the possible executions
and the labels on the edges record each occurring variable
call. We use t for values of type TTree.

There are other, equivalent ways to interpret this type:
Each TTree corresponds to a non-empty set of (finite) lists of
variable names that is prefixed-closed (i.e. for every list in the
set, its prefixes are also in the set). Each such list corresponds
to a (finite) path in the tree. The function paths : TTree→ 2[Var]

implements this correspondence.
Another view is given by the function

next : Var→ TTree→ TTree⊥,

where next x t = t′ iff the root of t has an edge labeled
x leading to t′, and next x t = ⊥ if the root of t has no
edge labeled x. In that sense, TTree represents automata with
labeled transitions.

The basic operations on trees are ⊕, given by paths(t ⊕
t′) = paths t ∪ paths t′, and ⊗, where paths(t⊗ t′) is the set
of all interleavings of lists from paths t with lists from paths t′.
We write t∗ for t ⊗ t ⊗ t ⊗ · · · . A tree is called repeatable if
t = t⊗ t = t∗.

The partial order used on TTree is t v t′ ⇐⇒ paths t ⊆
paths t′. We write for the tree with no edges and x for x ,
the tree with exactly one edge labeled x. The tree t \ V is t
with all edges with labels in V contracted, t

∣∣
V is t with all

edges but those labeled with variables in V contracted.
If we have a binding (Γ, e), and for e as well as for all

bound expressions, we have a TTree describing their calls,
how would we combine that information? A first attempt
might be a function s : (Var → TTree) → TTree → TTree
defined by

next x (s t̄ t) :=

{
⊥ if next x t = ⊥
s t̄ (t′ ⊗ t̄ x) if next x t = t′,

that traverses the tree t and upon every call interleaves the
tree of the called name, t̄ x, with the remainder of t.

This is a good start, but it does not cater for thunks, where
the first call behaves differently than later calls. Therefore, we
have to tell s which variables are bound to thunks, and give
them special treatment: After a variable x referring to a thunk
is evaluated, we pass on a modified map where t̄ x = .

Hence s : 2Var → (Var → TTree) → TTree → TTree is
defined by

next x (sT t̄ t)

:=


⊥ if next x t = ⊥
sT t̄ (t′ ⊗ t̄ x) if next x t = t′, x /∈ T
sT (t̄[x 7→ ]) (t′ ⊗ t̄ x) if next x t = t′, x ∈ T.

The ability to define this function (relatively) easily is the
main advantage of working with trace trees instead of co-call
graphs at this stage.

We project a TTree to a value of type (Var → Card), as
required for a cardinality analysis, using c : TTree→ (Var→
Card) defined by

c(t) x :=


⊥, if x does not occur in t
1, if on each path in t, x occurs at most once
∞, otherwise.

Specification A tree cardinality analysis determines for ev-
ery expression e and arity α the tree Tα(e) of calls to free
variables of e which are performed by evaluating e with α
arguments and using the result in any way.

We write Tᾱ(Γ) for the analysis lifted to bindings, returning
⊥ for variables not bound in Γ or mapped to ⊥ in ᾱ.

We also need a variant Tα(Γ, e) that, given bindings Γ,
an expression e and an arity α, reports the calls on dom Γ
performed by e and Γ with these bindings in scope.

We can now identify conditions on T that allow us to
satisfy the specifications in Definition 6.

Definition 9 (Tree cardinality analysis specification) We ex-
pect the cardinality analysis to agree with the arity analysis
on which variables are called at all:

dom Tα(e) = domAα(e) (T-dom)
dom Tα(Γ, e) = domAα(Γ, e) (Th-dom)

Inequalities for the syntactic constructs:

x∗ ⊗ Tα+1(e) v Tα(e x) (T-App)
(Tα−1(e)) \ {x} v Tα(λx. e) (T-Lam)
Tα(e[y := x]) v x∗ ⊗ (Tα(e)) \ {y} (T-subst)

x v Tα(x) (T-Var)
T0(e)⊗ (Tα(et)⊕ Tα(ef )) v Tα(e ? et : ef ) (T-If)

(sthunks Γ (TAα(Γ,e)(Γ)) (Tα(e))) \ dom Γ v Tα(let Γ in e)

(T-Let)

For values, analyzed without arguments, the analysis is ex-
pected to return a repeatable tree:

isVal(e) =⇒ T0(e) is repeatable (T-value)

The specification for Aα(Γ, e) is closely related to (T-Let):

(sthunks Γ (TAα(Γ,e)(Γ)) (Tα(e)))
∣∣
dom Γ v Tα(Γ, e) (Th-s)

And finally, the connection to the arity analysis:

x ∈ thunks Γ, c(Tα(Γ, e)) x = ∞ =⇒ (Aα(Γ, e)) x = 0
(Th-∞-thunk)

2

Safety If we have a tree cardinality analysis, we can define
a cardinality analysis in the sense of the previous section. The
definition for Cα(Γ, e) is straight forward:

Cα(Γ, e) := c(Tα(Γ, e)).

In order to define C(ᾱ,α,α̇)((Γ, e, S)) we need to fold the tree
cardinality analysis over the stack:

Ṫ_([]) := ⊥
Ṫα·α̇((et : ef )·S) := Ṫα̇(S)⊗ (Tα(et)⊕ Tα(ef ))

Ṫα̇($x·S) := Ṫα̇(S)⊗ x∗

Ṫα̇(#x·S) := Ṫα̇(S).

With this we can define

C(ᾱ,α,α̇)((Γ, e, S)) := c
(
sthunks Γ (Tᾱ(Γ)) (Tα(e)⊗ Ṫα̇(S))

)
,

and set out to prove



Lemma 4 Given a tree cardinality analysis satisfying Definition 9,
together with an arity analysis satisfying Definition 2, the derived
cardinality analysis satisfies Definition 6. 2

PROOF The proof follows by calculation involving c and the
operations on trees.

Condition (C-If2) is where the precision comes from, as
we retain the knowledge that two code paths are mutually
exclusive.

In the proof for (C-Var2), we know that T0(e) is repeatable,
as isVal(e). This allows us to use that if a repeatable tree t is
already contained in the second argument to s, then we can
remove it from the range of the first argument:

sT (t̄[x 7→ t]) (t⊗ t′) = sT t̄ (t⊗ t′) �

5.3 Co-Call cardinality analysis

The preceding section provides a framework for a cardinal-
ity analysis, but the infinite nature of the TTree data type
prevents an implementation on that level. For a real imple-
mentation, we need a practically implementable data type
that approximates the trees.

The data type Graph used in the implementation is an
undirected, non-transitive graph with loops on the set of
variables. The intuition is that only the nodes of G (denoted
by dom G) are called, and that an edge x—y ∈ G indicates
that x and y can be called together, while the absence of an
edge guarantees that calls to x resp. y are mutually exclusive.

Loops thus indicate whether a variable is going to be called
more than once: The graph x y allows at most one call to y
(possibly together with one call to x), while x y allows
any number of calls to y (but still at most one to x).

We specify graphs via their edge sets, e.g.

V ×V′ := {x—y | x ∈ V ∧ y ∈ V′ ∨ y ∈ V ∧ x ∈ V′}
for the Cartesian product of variable sets, and either specify
their node set separately (e.g. dom(V × V′) = domV ∪
domV′) or leave it implicit.

We write V2 := V ×V. The set of neighbors of a variable
is Nx(G) := {y | x—y ∈ G}. The graph G \V is G with nodes
in V removed, while G

∣∣
V is G with only nodes in V retained.

The graphs are ordered by inclusion, with ⊥ = {}.
We can convert a graph to a TTree with t : Graph→ TTree:

paths(t(G))

:= {x1 · · · xn | ∀i. xi ∈ dom G ∧ ∀j 6= i. xi—xj ∈ G}.
We can also approximate a TTree by a Graph with the function
g : TTree→ Graph:

g(t) :=
⋃
{ġ(ẋ) | ẋ ∈ paths t}

using ġ : [Var]→ Graph where dom ġ(x1 · · · xn) = {x1, . . . , xn}
and ġ(x1 · · · xn) := {xi—xj | i 6= j ≤ n}.

The mappings t and g form a monotone Galois connection:
g(t) v G ⇐⇒ t v t(G). It even is a Galois insertion, as
g(t(G)) = G.

Specification We proceed in the usual scheme, by giving a
specification for a safe co-call cardinality analysis, connecting
it to the tree cardinality analysis, and eventually proving that
our implementation fulfills the specification.

A co-call cardinality analysis determines for each expres-
sion e and incoming arity α its co-call graph Gα(e). As be-
fore, we also require a variant that analyses bindings, written
Gα(Γ, e). The conditions in the following definition are obvi-
ously designed to connect to Definition 9.

Definition 10 (Co-call cardinality analysis specification) We
want the co-call graph analysis to agree with the arity analysis
on what is called at all:

domGα(e) = domAα(e) (G-dom)

As usual, we have inequalities for the syntactic constructs:

Gα+1(e) ∪ ({x} × fv(e x)) v Gα(e x) (G-App)
Gα−1(e) \ {x} v Gα(λx. e) (G-Lam)

Gα(e[y := x]) \ {x, y} v Gα(e) \ {x, y} (G-subst)
G0(e) ∪ Gα(et) ∪ Gα(ef )∪
(domA0(e)× (domAα(et) ∪ domAα(ef )))

v Gα(e ? et : ef ) (G-If)
Gα(Γ, e) \ dom Γ v Gα(let Γ in e) (G-Let)

isVal(e) =⇒ (fv e)2 v G0(e) (G-value)

The following conditions concern Gα(Γ, e), which has to cater
for the calls originating in e,

Gα(e) v Gα(Γ, e), (Gh-body)

the calls originating in the right-hand-sides,

(x 7→ e′) ∈ Γ =⇒ GAα(Γ,e) x(e
′) v Gα(Γ, e), (Gh-heap)

and finally the extra edges between what is called from the
right-hand-side of a variable and whatever the variable is
called with:

(x 7→ e′) ∈ Γ, isVal(e′) =⇒
(fv e′)× Nx(Ga(γ, e)) v Gα(Γ, e). (Gh-extra)

For thunks, we can be slightly more precise: Only one call to
them matters, so we can ignore a possible edge x—x:

(x 7→ e′) ∈ Γ, ¬ isVal(e′) =⇒
(fv e′)× (Nx(Ga(γ, e)) \ {x}) v Gα(Γ, e) (Gh-extra’)

Finally, we need to ensure that the cardinality analysis is
actually used by the arity analysis when dealing with thunks.
For recursive bindings, we never eta-expand thunks:

rec Γ, x ∈ thunks Γ, x ∈ domAα(Γ, e) =⇒
Aα(Γ, e) = 0 (Rec-∞-thunk)

But for a non-recursive thunk, we only have to worry about
thunks which are possibly called multiple times:

x /∈ fv e′, ¬ isVal(e′), x—x ∈ Gα(Γ, e) =⇒
Aα([x 7→ e′], e) = 0 (Nonrec-∞-thunk)

2

Safety From a co-call analysis fulfilling Definition 10 we can
derive a tree cardinality analysis fulfilling Definition 9, using

Tα(e) := t(Gα(e)).

The definition of Tα(Γ, e) differs for nonrecursive and recur-
sive bindings. For a non-recursive binding Γ = [x 7→ e′] we
have Tα(Γ, e) := t(Gα(e))

∣∣
dom Γ and for recursive Γ we define

Tα(Γ, e) := t((domAα(Γ, e))2), i.e. the bound variables may
call each other in any way.

Lemma 5 Given a co-call cardinality analysis satisfying Defini-
tion 10, together with an arity analysis satisfying Definition 2, the
derived cardinality analysis satisfies Definition 9. 2

PROOF Most conditions of Definition 9 follow by simple
calculation from their counterpart in Definition 10 using the



Galois connection

t v t(G) ⇐⇒ g(t) v G

and identities such as g(t⊕ t′) = g(t) ∪ g(t′) and g(t⊗ t′) =
g(t) ∪ g(t′) ∪ (dom t× dom t′).

For (T-Let), we use (G-Let) with the following lemma:

g(t) v G ∀x /∈ S. t̄ x = ⊥ ∀x ∈ S. g(t̄ x) v G
∀x ∈ S, x /∈ T. dom(t̄ x)× Nx(G) v G

∀x ∈ S, x ∈ T. dom(t̄ x)× (Nx(G) \ {x}) v G
=⇒ g((sT t̄ t) \ S) v G,

which we instantiate with T = thunks Γ, t̄ = TAα(Γ,e)(Γ),
t = Tα(e) and S = dom Γ. �

5.4 Call Arity, concretely

At last we can give the complete and concrete co-call analysis
corresponding to GHC’s Call Arity, and establish its safety via
our chain of refinements, simply by checking the conditions
in Definition 10.

The arity analysis is:

Aα(x) := [x 7→ α]

Aα(e x) := Aα+1(e) t [x 7→ 0]
Aα(λx. e) := Aα−1(e) \ {x}

Aα(e ? et : ef ) := A0(e) tAα(et) tAα(ef )
Aα(Cb) := ⊥ for b ∈ {t, f}

The analysis of a let expression Aα(let Γ in e) as well as
the analysis of a binding Aα(Γ, e) are defined differently for
recursive and non-recursive bindings.

For a recursive Γ, we have Aα(let Γ in e) := ᾱ \ dom Γ and
Aα(Γ, e) := ᾱ

∣∣
dom Γ where ᾱ is the least fixed point defined by

the equation

ᾱ = Aᾱ(Γ) tAα(e) t [x 7→ 0 | x ∈ thunks Γ].

For a non-recursive binding Γ = [x 7→ e′] we have
Aα(let Γ in e) := (Aα′ (e′) t Aα(e)) \ dom Γ and Aα(Γ, e) :=
[x 7→ α′] where

α′ :=

{
0 if ¬ isVal(e′) and x—x ∈ Gα(e)
Aα(e) x otherwise.

We have domGα(e) = domAα(e) and

Gα(x) := {}
Gα(e x) := Gα+1(e) ∪ ({x} × fv(e x))

G0(λx. e) := (fv e)2 \ {x}
Gα+1(λx. e) := Gα(e) \ {x}
Gα(e ? et : ef ) := G0(e) ∪ Gα(et) ∪ Gα(ef ) ∪

(domA0(e)× (domAα(et) ∪ domAα(ef )))
Gα(Cb) := {} for b ∈ {t, f}

Gα(let Γ in e) := Gα(Γ, e) \ dom Γ

The analysis result for bindings is different for recursive
and non-recursive bindings and uses the auxiliary function

Gᾱ;G(x 7→ e′) :=

{
(fv e′)2 if isVal(e′) ∧ x—x ∈ G
Gᾱ x(e′) otherwise,

which calculates the co-calls of an individual binding, adding
the extra edges between multiple invocations of a bound
variable, unless it is bound to a thunk and hence shared.

For recursive Γ we define Gα(Γ, e) as the least fixed point
fulfilling

Gα(Γ, e) = Gα(e) t
⊔

(x 7→e′)∈Γ

GAα(Γ,e);Gα(Γ,e)(x 7→ e′)

t
⊔

(x 7→e′)∈Γ

(fv e′ × Nx(Gα(Γ, e))).

For a non-recursive Γ = [x 7→ e′], we have

Gα(Γ, e) = Gα(e) t GAα(Γ,e);Gα(e)(x 7→ e′)

t
{
fv e′ × (Nx(Gα(e)) \ {x}) if ¬ isVal(e′)
fv e′ × Nx(Gα(e)) if isVal(e′).

Theorem 1 Call Arity is safe (in the sense of Definition 1).

PROOF By straightforward calculation (and simple induction
for (G-subst)), we can show that the analyses fulfill Defini-
tion 2 and Definition 10. So by Lemma 5, Lemma 4, Lemma 3
and Corollary 1, the analyses are safe. �

6. The formalization in Isabelle
On their own, the proofs presented in the previous sections are
not very interesting, as they are neither very elegant nor very
innovative. What sets them apart from similar work is that
these proofs have been carried out in the interactive theorem
prover Isabelle [22]. This provides a level of assurance that is
hard to reach using pen-and-paper-proofs.

But it also greatly increases the effort involved in obtaining
a result like Theorem 1. The Isabelle development correspond-
ing to this paper, including the definition of the syntax and
the semantics, contains roughly 12,000 lines of code with 1,200
lemmas (many small, some large) in 75 theories, created over
the course of 9 months [4]. Large parts of it, however, can be
re-used for other developments: The syntax and semantics,
of course, but also the newly created data types like the trace
trees and the co-call graphs.

Much of the complexity is owed to the problem of bind-
ings. Using Nominal logic ([27], implemented for Isabelle in
Christian Urban’s Nominal2 package) helped a lot here, but
still incurs a technical overhead, as all involved definitions
have to be proven equivariant, i.e. oblivious to variable re-
naming. While usually simple to prove, these lemmas still
have to be stated.

Another cause of overhead is ensuring that all analyses
and the operators used by them are monotone and continuous,
so that the fixed points are actually well-defined. Here, the
HOLCF package by Brian Huffman [14] is used with good
results, but again not without an extra cost compared to
handwaving over such issues in pen-and-paper proofs.

So while the actual result shown here might not have
warranted that effort on its own – after all, performance
regressions due to bugs in the Call Arity analysis do not
have very serious consequences – it lays ground towards
formalizing more and more parts of the core data structures
and algorithms in our compilers.

The separation into individual theories (Isabelle’s equiv-
alent to Haskell’s modules) as well as the use of locales ([2],
Isabelle’s approximation to a module system) helps to gain
insight into the structure of an otherwise very large proof, by
ensuring a separation of concerns. For example, the proof of
JT0(e)K = JeK has only the conditions from Definition 2 avail-
able, which shows that the cardinality analysis is irrelevant
for functional correctness.



6.1 The formalization gap

Every formalization – whether hand-written or machine-
checked – has a formalization gap, i.e. a difference to the
formalized artifact that is not (and often cannot) be formally
bridged. Despite the effort that went into this formalization,
the gap is not very narrow, and in at least one instance has
been wide enough to fall into:

• Clearly, we have not formalized the algorithm as imple-
mented in GHC, but rather a mathematical description of
it. Haskell code has no primitive function yielding a least
fixed point, but has to find it using fixed-point iteration.
Termination of the algorithm is not covered here.

• Our syntax is a much restricted variant of GHC’s inter-
mediate language Core. The latter is said to be simple,
having just 15 constructors, but that is still a sizable chunk
for a machine-checked formalization. Our meta-argument
is that, for this particular theorem, our smaller syntax is
representative.

• GHC’s Core is typed, while we work in an untyped setting.
The analysis, as implemented in GHC, ignores the types, so
we argue that this is warranted. The general-purpose eta-
expansion code used to implement the transformation will
simply refrain from expanding a definition if its type does
not obviously allow it, which can be the case with type
functions. As the specifications used in the proofs require
only lower bounds on the analysis results, the results still
hold if one is more conservative than the analysis allows.

• In GHC, terms are part of modules and packages; this
complexity is completely ignored here. The real imple-
mentation will, for example, not collect arity and co-call
information for external identifiers, as they cannot be used
anyway. This implementation short-cut is ignored here.

• Identifiers in GHC’s core are annotated with a wealth of
additional information – inlining information, occurrence
information, strictness signatures, demand information.
As later phases rely on these information, they have to be
considered part of the language, and should be included
in a formal semantics.
This actually caused a nasty bug1 that appeared in the
third release candidate of GHC 7.10. The symptoms were
weird: The program would skip over a call to error and
simply carry on with the rest of the code. With Call Arity
disabled, nothing bad happened. What went wrong?
It boiled down to a function

f :: a→ b
f x = error “. . . ”

which the strictness analyzer annotates with <B,A>b, indi-
cating that once f is called with one argument, the result is
definitely bottom.
In the code at hand, every call to f passes two arguments,
i.e. case f x y of {. . . }. Therefore Call Arity determines f ’s
external arity to be 2, and changes the definition to

f x y = error “. . . ” y
The strictness annotation on f , however, is still present,
allowing the simplifier to change the code that contains
the call to f to case f x of {}, as passing one argument is
enough to cause the exception to be raised. It also removes
all alternatives from the case, as the control flow will not
return.

1 https://ghc.haskell.org/trac/ghc/ticket/10176

On their own, each transformation is correct; together,
havoc is created: Due to the eta-expansion, the evaluation
of f x does not raise an exception. Because the case expres-
sion has no alternatives any more, the control flow in the
final program continues at some other, undefined part of
the program.
One way to fix this would be to completely remove anno-
tations that might no longer be true after eta-expanding
a function definition, losing the benefit that these annota-
tions provide. The actual fix was more careful and capped
the reported arity at the number of arguments with which,
according to the strictness signature, the function is defi-
nitely bottom.

• There is no official semantics of GHC Core that is precise
enough to observe sharing. The closest thing is Richard
Eisenberg’s work on formalizing Core [8], which includes
a small step operational semantics for all of Core, but with
call-by-name semantics. So the only “real” specification
would be GHC’s implementation, including all later stages
and the runtime system, which is not a usable definition.

• Finally, our formal notion of performance is an approxima-
tion for real performance. Formally capturing the actual
runtime of a program on modern hardware with multiple
cores and complex caches is currently way out of reach.

7. Related work
This work connects arity and cardinality analyses with opera-
tional safety properties, using an interactive theorem prover;
as such this is a first.

However, this is not the first compiler transformation
proven correct in an interactive theorem prover. After all there
is CompCert (e.g. [17]), a complete verified optimizing com-
piler for C implemented in Coq. Furthermore, a verified Java
to Java bytecode compiler [18] was written using Isabelle’s
code generation facilities, and the CakeML project has pro-
duced, among other things, a verified compiler from CakeML
to CakeML bytecode, implemented in the HOL4 theorem
prover [15]. Their theorems cover functional correctness of
the compilers, though, but not performance.

Using a resource aware program logic for a subset of Java
bytecode, which they have implemented in Isabelle, Aspinall,
Beringer and Momigliano validate local optimizations [1] to
be indeed optimizations with regard to a variety of resource
algebras. The Isabelle formalizations of the proofs seem to be
lost.

In the realm of functional programming languages, a
number of formal treatments of compiler transformations
exist, e.g. verification of the CPS transformation in Coq (e.g.
[6], [7]), Twelf (e.g. [26]) or Isabelle (e.g. [20]). As their focus
lies on finding proper techniques for handling naming, their
semantics do not express heap usage and sharing.

Sand’s improvement theory [23] provides an general, inequa-
tional algebra to describe the effect of program transforma-
tions on performance. Its notion of improvement is similar to
our notion of safety, while the more general notion of weak
improvement allows performance regressions up to a con-
stant factor. This theory was adapted for lazy languages, both
for improvement of time [21] and space [11, 12].

Recently, Hackett and Hutten [13] took up on Sands’ work
and built a general framework to prove worker/wrapper trans-
formations time improving. And while neither that nor Sands’s
work have yet been machine-checked, at least the semantic
correctness of Hutton’s worker/wrapper framework has been
verified using Isabelle [9].

https://ghc.haskell.org/trac/ghc/ticket/10176


Could we have built our results on theirs, especially as [13]
uses almost the same abstract machine? Indeed, eta-expansion
can be phrased as an instance of the worker/wrapper transfor-
mation, with abstraction and representation contexts Abs = []
and Rep = (λz1 . . . zn. ([] z1 . . . zn)). Unfortunately, the as-
sumptions of the worker/wrapper improvement theorem
are not satisfied, and this is to be expected: Sands’ notion of
improvement – and hence Hackett and Hutton’s theorems –
guarantee improvement in all contexts, while in our case the
eta-expansion is justified by an analysis of the actual context,
and is generally unsafe in other contexts.

So in the current form, improvement theory is tailored to
local transformations and, as Sands points out in [12], would
require the introduction of context information to apply to
whole-program transformations such as Call Arity. Such a
grand unified improvement theory for call-by-need would be
a tremendously useful thing to have.

Related to the Call Arity analysis are the GHC’s “regular”
arity analysis, which is described in working notes by Xu and
Peyton Jones [28], and its cardinality analysis, most recently
described in [24]. See [5] for a detailed discussion.

8. Conclusion
First and foremost, we have proven that Call Arity is a safe
transformation.

That was initially not the case: Working towards a formally
precise understanding of Call Arity uncovered a bug in the
implementation, where thunks would erroneously be eta-
expand when they are part of a linearly recursive binding.2
So the work was useful. But that alone does not warrant the
effort put into this work – this bug would have been spotted
by someone eventually, and indeed the formalization gap is
still wide enough to hide bugs from our formal tools.

What made this work worth it is the scarcity of formal
treatments of the performance effects of compiler transforma-
tions, so it is an additional data point to the question “How
practical is it, yet?”. Our answer here is, yes, it is possible, but
still too tedious, and the formalization gap is a bit too wide.

We have created reusable artifacts – syntax, semantics, data
structures – that make similar endeavors, e.g. a safety proof
of the cardinality analysis described in [24], more tractable.

It would be very desirable to narrow the formalization gap
and formalize GHC’s Core in Isabelle. Using Isabelle’s code
generation to Haskell, even verified implementations of Core-
to-Core transformations in GHC appear possible. This would
be a milestone on the way to formally verified compilation of
Real-World-Haskell.
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