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Abstract
Higher order combinators in functional programming lan-
guages can lead to code that would be considerably more
efficient if some functions’ definitions were eta-expanded, but
the existing analyses are not always precise enough to allow
that. In particular, this has prevented the implementation of
foldl via foldr, which would allow foldl to take part in list
fusion.

Call Arity is an analysis that eta-expands functions based
on their uses, instead of their definitions, and is very precise
in the presence of recursion. Its inclusion in GHC now allows
foldl-based combinators to take part in list fusion.

1. Introduction
After more than two decades of development of Haskell
compilers, one has become slightly spoiled by the quality and
power of optimizations applied by the compiler. For example,
list fusion allows us to write concise and easy to understand
code using combinators and list comprehensions and still
get the efficiency of a tight loop that avoids allocating the
intermediate lists.

Unfortunately, not all list-processing functions take part in
list fusion. In particular, left folds like foldl, foldl′, length and
derived functions like sum are not fusing, and the expression
sum (filter f [42 . . 2014 ]) still allocates and traverses one list.

The issue is that in order to take part in list fusion, these
need to be expressed as right folds, which requires higher-
order parameters like in

foldl k z xs = foldr (λv fn z. fn (k z v)) id xs z.
The resulting fused code would be allocating and calling
function closures on the heap and prevent good code from
being generated ([7]).

Andrew Gill already noted that eta-expansion based on
an arity analysis would help here [5]. Existing arity analyses
however are not precise enough to allow for a fusing foldl.

Why is this so hard? Consider the slightly contrived exam-
ple in Figure 1: Our goal is to eta-expand the definition of tA.
For that, we need to ensure that it is always called with one
argument, which is not obvious: Syntactically, the only use of
tA is in goB, and there it occurs without an argument. But we
see that goB is initially called with two arguments, and under

[Copyright notice will appear here once ’preprint’ option is removed.]

let tA = if f a then . . . else . . .
in let goA x = if f (tB + x) then goA (x + 1) else x

tB = let goB y = if f y then goB (goA y) else tA
in goB 0 1

in goA (goA 1)

Figure 1. Is it safe to eta-expand tA?

that assumption calls itself with two arguments as well, and
therefore always calls tA with one argument – done.

But tA is a thunk – an expression not in head normal form
– and even if there are many calls to tA, the call to f a is only
evaluated once. If we were to eta-expand tA we would be
duplicating that possibly expensive work! So we are only
allowed to eta-expand it if we know that it is called at most
once. This is tricky: It is called from a recursive function goB,
which again is called from the mutual recursion consisting of
goA and tB, and that recursion is started multiple times!

Nevertheless we know that tA is evaluated at most once: tB
is a thunk, so although it will be evaluated multiple times by
the outer recursion, its right-hand side is only evaluated once.
Furthermore the recursion involving goB is started once and
stops when the call to tA happens. Together, this implies that
we are allowed to eta-expand tA without losing any work.

We have developed an analysis, dubbed Call Arity, that is
capable of this reasoning and correctly detects that tA can be
eta-expanded. It is a combination of a standard forward call
arity analysis ([5], [13]) with a novel co-call analysis. The latter
determines for an expression and two variables whether one
evaluation of the expression can possibly call both variables
and – as a special case – which variables it calls at most once.
We found that this is just the right amount of information to
handle tricky cases like Figure 1.

In particular, we make the following contributions:

• We present a new forward arity analysis (Section 3) based
on a co-call analysis.

• The analysis is conservative: No sharing is lost as the result
of the eta-expansion.

• The analysis is more precise than existing analyses: It can
detect that a variable is called once even in the presence of
recursion. We explain why co-call analysis is required for
this level of precision. (Section 2).

• The analysis is free of heuristics: No arbitrary choices need
to be made by an implementation of the analysis.

• We have implemented the analysis, it is included it in the
development version of GHC (Section 4).

• It is now beneficial to implement foldl as a good consumer
for list fusion (Section 5.1), as demonstrated by perfor-
mance measurements (Section 5.2).
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2. The need for co-call analysis
The main contribution of this paper is the discovery of the
co-call analysis and its importance for arity analysis. This
section motivates the analysis based on a sequence of ever
more complicated arity analysis puzzles.

2.1 A syntactical analysis

The simplest such exercise is the following code:
let f x = . . .
in f 1 2 + f 3 4.

Are we allowed to eta-expand f by another argument? Yes!
How would we find out about it? We’d analyze each expres-
sion of the syntax tree and collect this information:

For each free variable, what is a lower bound on the
number of arguments passed to it?

This will tell us that f is always called with two arguments, so
we eta-expand it.

2.2 Incoming arity

Here is a slightly more difficult puzzle:
let f x = . . .

g y = f (y + 1)
in g 1 2 + g 3 4.

Are we still allowed to eta-expand f? The previous syntactic
approach fails, as the right-hand side of g mentions f with
only one argument. However, g itself can be eta-expanded,
and once that is done we would see that g’s right hand side is
called with one argument more. We could run the previous
analysis, simplify the code, and run the analysis once more,
but we can do better by asking, for every expression:

If this expression is called with n arguments, for each
free variable, what is a lower bound on the number of
arguments passed to it?

The body of the let will report to call g with two arguments.
This allows us to analyze the right-hand side of g (which
consumes only one argument) with an incoming arity of 1, and
thus report that f is always called with two arguments.

For recursive functions this is more powerful than just
running the simpler variant multiple times:

let f x = . . .
g y = if y > 10 then f y else g (y + 1)

in g 1 2 + g 3 4.
A purely syntactical approach will never be able to eta-expand
g or f. But by assuming an incoming arity we can handle the
recursive case: The body of the let reports that g is called with
two arguments. We assume that is true for all calls to g. Next
we analyze the right-hand side of g and will learn – under our
assumption – that it calls g with two arguments, too, so our
assumption was justified and we can proceed.

The assumption can also be refuted when analyzing the
recursive function:

let f x = . . .
g y = if y > 10 then f y else foo (g (y + 1))

in g 1 2 + g 3 4.
The body still reports that it calls g with two arguments, but –
even under that assumption – the right-hand side of g calls
g with only one argument. So we have to re-analyze g with
one argument, which in turn calls f with one argument and
no eta-expansion is possible here.

This corresponds to the analysis outlined in [5].

2.3 Called-once information

So far we have only eta-expanded functions; for these the last
analysis is sufficient. But there is also the case of thunks: If the
expression bound to a variable x is not in head-normal form,
i.e. the outermost syntactic construct is a function call, case
expression or let-binding, but not a lambda, then the work
done by this expression is shared between multiple calls to x.

If we were to eta-expand the expression, though, the
expensive operation is hidden behind a lambda and will
therefore be evaluated for every call to x. Therefore it is crucial
that thunks are only eta-expanded if they are going to be
called at most once. So we need to distinguish the situation

let t = foo x
in if x then t 1 else t 2

where t is called at most once and eta-expansion is allowed
from

let t = foo x
in t 1 + t 2

where t is called multiple times and must not be eta-expanded.
An analysis that could help us here would be answering

this question:

If this expression is called once with n arguments,
for each free variable, what is a lower bound on the
number of arguments passed to it, and are we calling it
at most once?

In the first example, both branches of the if would report
to call t only once (with one argument), so the whole body of
the let calls t only once and we can eta-expand t. In the second
example the two subexpressions t 1 and t 2 are both going
to be evaluated. Combined they call t twice and we cannot
eta-expand t.

2.4 Mutually exclusive calls

What can we say in the case of a thunk that is called from a
recursion:

let t = foo x
in let g y = if y > 10 then t else g (y + 1)

in g 1 2.
Clearly t is called at most once, but the current state of the
analysis does not see that: The right-hand side of g reports to
call t and g at most once. But we would get the same result
from

let t = foo x
in let g y = if y > 10 then id else g (y + t)

in g 1 2
as well, where t is called many times!

How can we extend our analysis to distinguish these two
cases? The crucial difference is that in the first code, g calls
either t or g, while the second one calls both of them together.
So we would like to know, for each expression:

If this expression is called once with n arguments,
for each free variable, what is a lower bound on the
number of arguments passed to it? Additionally, what
set of variables is called mutually exclusively and at
most once?

In the first example, the right-hand side would report to
call {t, g}mutually exclusively and this allows us to see that
the call to t lies not on the recursive path, so there will be at
most one call to t in every run of the recursion. We also need
the information that the body of the let (which reports {g})
and the right-hand side of g both call g at most once; if the
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recursion were started multiple times, or were not linear, then
we’d get many calls to t as well.

2.5 Co-Call Analysis

The final puzzle in this sequence shows the shortcomings of
the previous iteration and the strength of the co-call analysis.
Consider the code

let t1 = foo x
in let g x = if x > 10

then t1
else let t2 = bar x

in let h y = if y > 10
then g (t2 y)
else h (y + 1)

in h 1 x
in g 1 2.

Both recursions are well-behaved: They are entered once and
each recursive function calls either itself once or calls the
thunk t1 resp. t2 once. So we would like to see both t1 and t2
eta-expanded. Unfortunately, with the analysis above we can
only get one of them.

The problematic subexpression is g (t2 y): We need to
know that g is called at most once and that t2 is called at most
once. But we cannot return {g, t2} as that is a lie – they are
not mutually exclusive – and we have to arbitrarily return
{g} or {t2}.

To avoid this dilemma we extend the analysis one last time,
allowing it to preserve all valuable information. We now ask,
for each expression:

If this expression is called once with n arguments,
for each free variable, what is a lower bound on the
number of arguments passed to it, and for each pair
of free variables, can both be called during the same
execution of the expression?

The latter tells us, as a special case, whether one variable
may be called multiple times.

So for the problematic expression g (t2 y) we would find
out that g might be called together with t2, but neither of them
is called twice. For the right-hand side of h the analysis would
tell us that either h is called at most once and on its own, or g
and t2 are called together, but each at most once. The whole
inner let therefore calls t2 and g at most once, and we get
to eta-expand t2 as well as learn that the outer recursion is
well-behaved.

3. The Call Arity analysis
Thus having motivated needs for the Call Arity analysis we
devote this section to a precise and formal description of
it. We use the simplified lambda calculus given in Figure 2.
Although the implementation works on GHC’s typed interme-
diate language Core, the types are not relevant for the analysis
itself, so we consider an untyped calculus. Also, data type
constructors and pattern matching play no role here and we
use e ? e1 : e2 as a simple representative for more complicated
case constructs. We also assume that all bound variables are
distinct and do not hold us up with naming issues.

Like Core we distinguish between the non-recursive let
and the (possibly mutually recursive) letrec, and we assume
that some earlier compiler pass has identified the strongly
connected components of the bindings’ dependency graph
and transformed the code so that all letrec-bound groups are
indeed mutually recursive.

v, x, y, z : Var variables

e : Expr expressions

e ::= x variable

| e1 e2 application

| λx. e lambda abstraction

| e ? e1 : e2 case analysis

| let x = e1 in e2 non-recursive binding

| letrec xi = ei in e mutually recursive bindings

Figure 2. A simple lambda calculus

3.1 The specification

The goal of this analysis is to find out the call arity of every
variable v, written nv. The specification for the call arity is:
The compiler can replace the binding let v = e by let v =
λx1 . . . xnv . e x1 . . . xnv without losing any sharing.

The analysis traverses the syntax tree in a bottom-up
manner. Each expression e is analyzed under the assumption
of an incoming arity n – , which is the number of arguments
the expression is currently being applied to – in order to
determine with at least how many arguments e calls its free
variables, and which free variables can be called together.
Separating these two aspects into two functions for this formal
description, we have

An : Expr→ (Var ⇀ N) arity analysis
Cn : Expr→ Graph(Var) co-call analysis

where ⇀ denotes a partial map and Graph(Var) is the type of
undirected graphs (with self-edges) over the set of variables.

The specifications for An and Cn are
• If An(e)[x] = m, then every call from e (applied to n

arguments) to x passes at least m arguments.
• If x1—x2 /∈ Cn(e), then no execution of e (applied to

n arguments) will call both x1 and x2. In particular, if
x—x /∈ Cn(e), then x will be called at most once.
We can define a partial order on the analyses’ results that

expresses the notion of precision: If x is correct and x v y,
then y is also correct, but possibly less precise. In particular
for A1, A2 : (Var ⇀ N) we have

A1 v A2 ⇐⇒ ∀x ∈ dom(A1). A1[x] ≥ A2[x]

(note the contravariance), because it is always safe to assume
that x is called with fewer arguments. For C1, C2 : Graph(Var),
we have

C1 v C2 ⇐⇒ C1 ⊆ C2,

because it is always safe to assume that two variables are
called both, or to assume that one variable is called multiple
times.

Thus the top of the lattice, i.e. the always-correct and
least useful result, maps every variable to 0 (making no
statements about their number of arguments), and has the
complete graph on all variables as the co-call graph (allowing
everything to be called with everything else).

The bottom of the lattice, i.e. the best information, is the
empty map and empty graph, and is correct for closed values
like λy. y.
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An(x) = {x 7→ n} Cn(x) = {}

An(e1 e2) = An+1(e1) t A0(e2) Cn(e1 e2) = Cn+1(e1) ∪ C0(e2) ∪ fv(e1)× fv(e2)

An+1(λx. e) = An(e) Cn+1(λx. e) = Cn(e)

A0(λx. e) = A0(e) C0(λx. e) = (fv(e))2

An(e ? e1 : e2) = A0(e) t An(e1) t An(e2) Cn(e ? e1 : e2) = C0(e) ∪ Cn(e1) ∪ Cn(e2) ∪ fv(e)× (fv(e1) ∪ fv(e2))

Figure 3. The Call Arity analysis equations

3.2 The equations

From the specification we can, for every syntactical construct,
derive equations that determine the analysis. In these equa-
tions, given in Figures 3 to 5, we use the operators

fv : Expr→ P(Var)
t : (Var ⇀ N)→ (Var ⇀ N)→ (Var ⇀ N)

× : P(Var)→ P(Var)→ Graph(Var)
2 : P(Var)→ Graph(Var)

where P(S) is the type of subsets of S; fv(e) is the set of
free variables of e; f t g is the union of two partial maps,
taking the minimum where both are defined; S1 × S2 =
{x—y | x ∈ S1, y ∈ S2} is the complete bipartite graph and
S2 = S× S = {x—y | x ∈ S, y ∈ S} is the complete graph on
S.

Case 1: Variables

Evaluating a variable with an incoming arity of n yields a call
to that variable with n arguments, so the arity analysis returns
a singleton map. Because we are interested in the effect of one
call to the expression, we return x as called at-most once, i.e.
the empty graph.

Case 2: Application

Here, the incoming arity is modified: If e1 e2 is being called
with n arguments, e1 is passed one more argument. On the
other hand we do not know how many arguments e2 is called
with – this analysis is not higher order – so we analyze it with
an incoming arity of 0.

The co-call analysis reports all possible co-calls from both
e1 and e2. Additionally, it reports that everything that may be
called by e1 can be called together with everything called by
e2.

This may be an over-approximation. Consider the expres-
sion e = (e0 ? x1 : x2)(e0 ? x3 : e4). The analysis will return the
graph

C0(e) =
x1
x2

x3
x4

although x1 will only be called together with x3 and x2 with
x4, as the conditional e0 will choose the same branch in both
cases.

Case 3: Lambda abstraction

For lambda abstraction, we have to distinguish two cases. The
good case is if the incoming arity is nonzero, i.e. we want
to know the behavior of the expression when applied once
to some arguments. In that case, we know that the body is
evaluated once, and applied to one argument less, and the
co-call information from the body can be used directly.

If the incoming arity is zero then we have to assume
that the lambda abstraction is used as-is, for example as a
parameter to a higher-order function, or stored in a data type.
In particular, it is possible that it is called multiple times. So
while the incoming arity on the body of the let stays zero
(which is always correct), we cannot obtain any useful co-call
results and have to assume that every variable mentioned in
e is called with every other.

Example The expression e = λx. (x0 ? x1 : x2) will, when
analyzed with an incoming arity of 1 or more, yield

C1(e) = x0
x1
x2

,

while the same expression, analyzed with arity 0, yields the
complete co-call graph

C0(e) = x0
x1
x2

.

Case 4: Case analysis

The arity analysis of a case expression is straight forward:
The incoming arity is fed into each of the alternatives, while
the scrutinee is analyzed with an incoming arity of zero; the
results are combined using t.

The co-call analysis proceeds likewise, but adds extra co-
call edges, connecting everything that may be called by the
scrutinee with everything that may be called in the alterna-
tives. This is, as usual when analyzing a case expression, anal-
ogous to what happens when analyzing an application.

Case 5: Non-recursive let

This case is slightly more complicated than the previous, so
we describe it in multiple equations in Figure 4.

We analyze the body of the let-expression first, using
the incoming arity of the whole expression. Based on that
we determine our main analysis result, the call arity of the
variable. There are two cases:
1. If the right-hand side expression e1 is a thunk and the body

of the let may possibly call it twice, i.e. there is a self-loop
in the co-call graph, then there is a risk of losing work
when eta-expanding e1, so we do not do that.

2. Otherwise, the call arity is the number of arguments that
x is called with in e2.
Depending on this result we need to adjust the co-call

information obtained from e1. Again, there are two cases:
1. We can use the co-call graph from e1 if e1 is evaluated at

most once. This is obviously the case if x is called at most
once in the first place. It is also the case if e1 is (and stays!)
a thunk, because its result will be shared and further calls
to x can be ignored here.
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nx =

{
0 if x—x ∈ Cn(e2) and e1 not in HNF
An(e2)[xi] otherwise

Crhs =

{
Cnx (e1) if x—x /∈ Cn(e2) or nx = 0
fv(e1)

2 otherwise

E = fv(e1)× {v | v—x ∈ Cn(e2)}
A = Anx (e1) t An(e2)

C = Crhs ∪ Cn(e2) ∪ E

An(let x = e1 in e2) = A Cn(let x = e1 in e2) = C

Figure 4. Equations for let x = e1 in e2

2. If e1 may be evaluated multiple times we cannot get useful
co-call information and therefore return the complete
graph on everything that is possibly called.
Finally we combine the results from the body and the right-

hand side, and add the appropriate extra co-call edges. We
can be more precise than in the application case because we
can exclude variables that are not called together with x from
the complete bipartite graph.

Note that we do not clutter the presentation here with
removing the local variable from the final analysis results. The
implementation removes x from A and C before returning
them.

Example Consider the expression

e = let v = (x ?(λy. x2) : x3) in λz. (x1 ? x2 : v y)

with an incoming arity of 1. The co-call graph of the body is

C1(λz. (x1 ? x2 : v y)) = x1
x2
v y

and A1(λz. (x1 ? x2 : v y))[v] = 1. The right-hand side is a
thunk, so we must be careful when eta-expanding it. But there
is no self-loop at v in the graph, so v is called at most once.
The call-arity of v is thus nv = 1 and we obtain

C1(x ?(λy. x2) : x3) = x
x2
x3

The additional edges E connect all free variables of the right-
hand side ({x, x2, x3}) with everything called together with
v from the body ({x1, y}) and the overall result (skipping the
now out-of-scope v) is

C1(e) = x
x2
x3

x1
y

Note that although x2 occurs in both the body and the right-
hand side, there is no self-loop at x2: The analysis has detected
that x2 is called at most once.

The results are very different if we analyze e with an
incoming arity of 0. The body is a lambda abstraction, so
may be called many times, and we have

C1(λz. (x1 ? x2 : v y)) = x1

x2

v

y

This time there is a self-loop at v, and we need to set nv = 0
to be safe. This also means that v stays a thunk and we still
get some useful information from the right-hand-side:

A = An(e) t
⊔
i

Anxi
(ei)

C = Cn(e) ∪
⋃
i

Ci ∪
⋃
i

Ei

nxi =

{
0 if ei not in HNF
A[xi] otherwise

Ci =

{
Cnxi

(ei) if xi—xi /∈ C or nxi = 0
fv(ei)

2 otherwise

Ei =

{
fv(ei)× N(Cn(e) ∪

⋃
j Cj) if nxi 6= 0

fv(ei)× N(Cn(e) ∪
⋃

j 6=i Cj) if nxi = 0

N(G) = {v | v—xi ∈ G, i = 1 . . .}

An(letrec xi = ei in e) = A Cn(letrec xi = ei in e) = C

Figure 5. Equations for letrec xi = ei in e

C0(x ?(λy. x2) : x3) = x
x2
x3

Due to the lower incoming arity we can no longer rule out
that x2 is called multiple times, as it is hidden inside a lambda
abstraction. The final graph now becomes quite large, because
everything in the body is potentially called together with v:

C0(e) = x1

x2

y

x

x3

This is almost the complete graph, but it is still possible to
derive that x and x3 are called at most once.

Case 6: Recursive let

The final case is the most complicated. It is also the reason
why the figures are labeled “Equations” and not “Definitions”:
They are also mutually recursive and it is the task of the imple-
mentation to find a suitable solution strategy (see Section 4.2).

The complication arises from the fact that the result of
the analysis affects its parameters: If the right-hand side of a
variable calls itself with a lower arity than the body, we need
to use the lower arity as the call arity. Therefore, the result (A
and C in the equation) is used to determine the basis for the
call-arity and co-call information of the variables.

Thunks aside, we can think of one recursive binding
letrec x = e1 in e2 as an arbitrarily large number of nested
non-recursive bindings

. . .
let x = e1 in
. . .
let x = e1 in e2.

The co-call information C can be thought of the co-call infor-
mation of this expression, and this is how xi—xi /∈ C has to
interpreted: Not that there are no multiple calls to xi in the
whole recursion (there probably are, given that it is a recur-
sion), but rather that when doing the infinite unrolling of the
recursion, there is at most one call to xi from outside the scope
of the outermost non-recursive let.

This analogy is flawed for thunks, where multiple nested
non-recursive bindings would have a different sharing behav-
ior. Therefore we set nxi = 0 for all thunks; this preserves the
sharing.
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The formulas for the additional co-calls Ei are a bit more
complicated than in the non-recursive case, and differ for
thunks and non-thunks. Consider one execution that reaches
a call to xi. What other variables might have been called on
the way? If the call came directly from the body e, then we
need to consider everything that is adjacent to xi in Cn(e). But
it is also possible that the body has called some other xj, j 6= i
and ej then has called xi – in that case, we need to take those
variables adjacent to xj in Cn(e) and those adjacent to xi in Cj.

In general, every call that can occur together with any
recursive call in any of the expressions can occur together
with whatever xi does.

For a thunk we can get slightly better information: A non-
thunk can be evaluated multiple times during the recursion,
so its free variables can be called together with variables on
ei’s own recursive path. A thunk, however, is evaluated at
most once, even in a recursive group, so for the calculation
of additional co-call edges it is sufficient to consider only the
other right-hand sides (and the body of the let, of course).

Example Consider the expression

e = letrec x1 = λy. (y1 ? x2 y : z1)

x2 = λy. (y2 ? x1 y : z2)

in λy. x1 y y

with an incoming arity of 1. It is an example for a nice tail-call
recursion as it is commonly produced by list fusion: The body
has one call into the recursive group, and each function in the
group also calls at most one of them.

The solution to the equations in Figure 5 in this example is

C1(e) = {}
nx1 = nx2 = 2

C1 = C2(e1) = {y1} × {x2, z1}
C2 = C2(e2) = {y2} × {x1, z2}

E1 = {y1, x2, z1} × {y1, y2}
E2 = {y2, x1, z2} × {y1, y2}

and the final result is

C = x1
x1
x2

y1

y2

z1
z2

where we see that at most one of z1 and z2 is called by the
loop, and neither of them twice.

In contrast consider this recursion, which forks in x2:

e = letrec x1 = λy. (y1 ? x2 y : z1)

x2 = λy. (y2 ? x1 (x1 y y) : z2)

in λy. x1 y y.

We see that now z1 and z2 are possibly called together and
multiple times. Indeed x1—x1 ∈ C2(e2) causes x1 ∈ N(. . .) in
the equation for Ei, so especially x1—x1 ∈ E2 ⊆ C. Therefore,
C1 = fv(e1)

2 and we also have x2—x2 ∈ C and C2 = fv(e2)
2.

Eventually, we find that the result is the complete graph on
all variables, i.e. E = {x1, x2, y1, y2, z1, z2}2, and in particular
z1—z2 ∈ E, as expected.

4. The implementation
The Call Arity analysis is implemented in GHC as a separate
Core-to-Core pass, where Core is GHC’s typed intermedi-

ate language based on System FC. This pass does not do the
eta-expansion; it merely annotates let-bound variables with
their call arity. A subsequent pass of GHC’s simplifier then
performs the expansion, using the same code as with the
regular, definition-based arity analysis, and immediately ap-
plies optimizations made possible by the eta-expansion. This
separation of concerns keeps the Call Arity implementation
concise and close to the formalization presented here.

GHC Core obviously has more syntactical constructs than
our toy lambda calculus, including literals, coercion values,
casts, profiling annotations (“ticks”), type lambdas and type
applications, but these are irrelevant for our purposes: For
literals and coercion values we return the bottom of the lattice;
the others are transparent to the analysis. In particular type
arguments are not counted towards the arity here, which
coincides with the meaning of arity as returned by GHC’s
regular arity analysis.

We want our analysis to make one pass over the syntax tree
(up to the fixpointing for recursive bindings, Section 4.2). So
instead of having two functions, one for the arity analysis and
one for the co-call analysis, we have one function callArityAnal
which returns a tuple (UnVarGraph, VarEnv Arity), where the
UnVarGraph is a data structure for undirected graphs on
variable names (see Section 4.4) and VarEnv is a partial map
from variable names to Arity, which is a synonym for Int.

The equations refer to fv(e), the set of free variables of
an expression. In the implementation, we do not use GHC’s
corresponding function exprFreeIds, as this would require an-
other traversal of the expression. Instead we use dom(An(e)),
which by construction happens to be the set of free variables
of e, independent of n.

In the sequence of Core-to-Core passes, we inserted Call
Arity and its eta-expanding simplifier pass between the sim-
plifier’s phase 0, as that is when all the rewrite rules have
been active [9], and the strictness analyzer, because we want
to have a chance to unbox any new arguments, such as the
accumulator in a call to sum.

4.1 Interesting variables

The analysis as presented in the previous section would be too
expensive if implemented as is. This can be observed when
compiling GHC’s DynFlags module, which defines a record
type with 157 elements. The Core code for a setter of one of
the fields is

setX42 x (DynFlags x1 . . . x41 x43 . . . x157)
= (DynFlags x1 . . . x41 x x43 . . . x157).

For the body of the function, the analysis would report that
157 variables are called with (at least) 0 arguments, and that
all of them are co-called with every other, a graph with 12246
edges. And none of this information is useful: The variables
come from function parameters or pattern matches and there
is no definition that we can possibly eta-expand!

Therefore we keep track of the set of interesting variables,
and only return information about them. Interesting variables
are all let-bound variables, not interesting are parameters or
pattern match results.

4.2 Fixpointing

The equations in the previous section specify the analysis, but
do not provide an algorithm: In the case of letrec (Figure 5),
the equations are mutually recursive and the implementation
has to employ a suitable strategy to find a solution.

We find the solution by iteratively approaching the fix-
point, using memorization of intermediate results.

1. Initially, we set A = An(e) and C = Cn(e).
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2. For every variable xi ∈ dom A that has not been analyzed
before, or has been analyzed before with different values
for nxi or xi—xi ∈ C, we (re-)analyze it, remembering the
parameters and memorize the result Anxi

(ei) and Ci.

3. If any variable has been (re)analyzed in this iteration,
recalculate A and C and repeat from step 2.

This process will terminate, as shown by a simple standard
argument. The variant that proves this consists of nxi and
whether xi—xi ∈ C: The former starts at some natural number
and decreases, the latter may start as not true, but once it is
true, it stays true. Therefore, these parameters can change only
a finite number of times, and we terminate once all of them
are unchanged during one iteration. The monotonicity of the
parameters follows from the monotonicity of the equations for
An and Cn: We have that n ≥ n′ implies An(e) v An′ (e) and
Cn(e) v Cn′ (e), which is easily verified by case distinction.

4.3 Top-level values

GHC supports modular compilation. Therefore, for exported
functions, we do not have the call sites available to analyze.
Nevertheless we do want to be able to analyze and eta-expand
non-exported top-level functions.

To solve this elegantly we treat a module
module (foo) where
bar = . . .
foo = . . .

like a sequence of let-bindings
let bar = . . .

foo = . . .
in e

where e represents the external code for which we assume
the worst: It calls all exported variables (foo here) with 0
arguments and the co-call graph is the complete graph. This
prevents unwanted expansion of foo, but still allows us to
eta-expand bar based on how it is called by foo.

4.4 The graph data structure

The data type UnVarGraph used in the implementation is
specifically crafted for our purposes. The analysis often builds
complete bipartite graphs and complete graphs between set
of variables. A usual graph representation like adjacency lists
would therefore be quadratic in size and too inefficient for
our uses.

Therefore we store graphs symbolically, as multisets of
complete bipartite and complete graphs. This allows for very
quick creation and combination of graphs. The important
query operation (the set of neighbors of a node) is done by
traversing the generating subgraphs.

One disadvantage of this data structure is that it does not
normalize the representation. In particular, the union of a
graph with itself is twice as large. This had to be taken into
account when implementing the fixpointing: It would be very
inefficient to update C by unioning it with the new results in
each iteration. Instead, C is recalculated from Cn(e) and the –
new or memorized – results from the bound expressions.

We experimented with simplifying the graph representa-
tion using identities like S1 × S2 ∪ S2

1 ∪ S2
2 = (S1 ∪ S2)

2, but
it did not pay off, especially as deciding set equality can be
expensive.

5. Discussion
5.1 Call Arity and list fusion

As hinted at in the introduction, Call Arity was devised
mainly to allow for a fusing foldl, i.e. a definition of foldl in
terms of foldr that takes part in list fusion while still producing
good code. How exactly does Call Arity help here?

Consider the code
sum (filter f [42 . . 2014 ])

Previously, only filter would fuse with the list comprehension,
eliminating one intermediate list, but the call to sum, being a
left-fold, would remain: Compiled with previous versions of
GHC, this produces code roughly equivalent to

let go = λx. let r = if x == 2014 then [ ] else go (x + 1)
in if f x then x : r else r

in foldl (+) 0 (go 42).
If we now change the definition of foldl to use foldr, as in
foldl k z xs = foldr (λv fn z. fn (k z v)) id xs z

all lists are completely fused and we obtain the code
let go = λx. let r = if x == 2014 then id else go (x + 1)

in if f x thenλa. r (a + x) else r
in go 42 0.

Without Call Arity, this is the final code, and as such quite
inefficient: The recursive loop go has become a function that
takes one argument, then allocates a function closure for r on
the heap, and finally returns another heap-allocated function
closure which will pop the next argument from the stack – not
the fastest way to evaluate a simple program.

With Call Arity the compiler detects that go and r can both
be eta-expanded with another argument, yielding the code

let go = λx a. let r = λa. if x == 2014 then a
else go (x + 1) a

in if f x then r (a + x) else r a
in go 42 0

where the number of arguments passed matches the number
of lambdas that are manifest on the outer level. This avoids
allocations of function closures and allows the runtime to do
fast calls [7], or even tail-recursive jumps.

5.1.1 Limitations

A particularly tricky case is list fusion with generators with
multiple (or non-linear) recursion. This arises when flattening
a tree to a list. Consider the code

data Tree = Tip Int | Bin Tree Tree

toList :: Tree→ [ Int ]
toList tree = build (toListFB tree)

toListFB root cons nil = go root nil
where

go (Tip x) rest = cons x rest
go (Bin l r) rest = go l (go r rest)

which is a good producer; for example filter f (toList t) is
compiled to

let go = λt rest. case t of
Tip x → if f x then x : rest else rest
Bin l r→ go l (go r rest)

in go t [ ].
If we add a foldr implemented left-fold to the pipe, i.e.

foldl (+) 0 (filter f (toList t)), the resulting code (before Call
Arity) is

let go = λt fn. case t of
Tip x → if f x then λa. fn (x + a) else fn
Bin l r→ go l (go r fn)

in go t id 0.
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Allocs Runtime

Arity Analysis X X X X X X
Co-Call Analysis X X X X
foldl via foldr X X X X X X

anna -1.3% -1.4% +0.0% +0.0%
bernouilli -0.0% -4.9% +3.7% +3.7%
calendar -0.1% -0.2% -0.1% -0.1% +4.7% +0.8% +0.8% +2.3%
fft2 -0.0% -79.0% -78.9% -78.9%
gen_regexps 0.0% -53.9% +33.8% +33.8% -1.2% -8.9% +223.6% +224.8%
hidden -0.3% -6.3% +1.2% +1.2% -3.3% -3.3% 0.0% 0.0%
integrate -0.0% -61.7% -61.7% -61.7% -6.0% -48.7% -48.7% -48.7%
minimax 0.0% -15.6% +4.0% +4.0%
rewrite -0.0% -0.0% -0.0% -0.0% +0.9% +6.1% +3.5% +0.9%
simple 0.0% -9.4% +8.1% +8.1%
x2n1 -0.0% -77.4% +84.0% +84.0%
. . . and 89 more

Min -1.3% -79.0% -78.9% -78.9% -6.0% -48.7% -48.7% -48.7%
Max +0.0% +0.0% +84.0% +84.0% +4.7% +6.1% +223.6% +224.8%
Geometric Mean -0.0% -5.2% -1.5% -1.5% -0.2% -1.4% +1.0% +1.2%

Table 1. Nofib results

Although go is always being called with three arguments, our
analysis does not see this. For that it would have to detect
that go calls its second parameter with one argument; as it is
a forward analysis (in the nomenclature of [13]) it cannot do
that.

Even if the arity analyzer were smart enough to eta-expand
go, the code would not be much better; we’d still be passing a
function closure to go.

The code that we would like to see is
let go = λt a. case t of

Tip x → if f x then a + x else a
Bin l r→ go l (go r a)

in go t 0
where just the accumulator is passed through the recur-
sion. This transformation requires much more than just eta-
expansion. Notably the worker-wrapper extension to list fu-
sion proposed by Takano (Section 6.4) is able to produce this
good code using just rewrite rules and without the help of
special compiler optimizations.

We still decided to let foldl take part in list fusion based
on the benchmark results, presented in the next section. They
indicate that the real-world benefits in the common case of
linear recursion are larger than the penalty in the non-linear
recursion.

5.2 Measurement

No paper on optimizations without some benchmark results.
We compare five variants:

• The baseline is GHC from March 14, 2014 (revision
23eb186), with Call Arity disabled and with the origi-
nal definition of foldl (commit b63face in the base libraries
reverted).

• To measure the effect of Call Arity analysis alone we enable
Call Arity, but leave foldl with the original definition.

• The practically important result is the current state of the
compiler, with Call Arity enabled and foldl implemented
via foldr; this is highlighted in the tables.

• To assess the importance of Call Arity for allowing foldl to
take part in list fusion, we also measured GHC without
Call Arity, but with foldl via foldr.

• To assess the importance of the co-call analysis, we also
measure how well an arity analysis without it, as described
in [5], would have fared.

The ubiquitous benchmark suite for Haskell is nofib [8];
our results are shown in Table 1, including individual results
for a few interesting benchmarks and the summary. For
benchmarks with very short running times we omitted the
numbers, as they are too inaccurate. The runtime numbers
are generally not very stable, so we’d like to put the focus on
the aggregate numbers.

As expected, enabling Call Arity does not increase the
number of allocations; if it did something would be wrong. On
its own, the analysis rarely has an effect. This is not surprising:
Programmers tend to give their functions the right arities
in the first place. Only in combination with making foldl a
good consumer we can see its strength: Allocation improves
considerably and without it, the change to foldl would actually
degrade the runtime performance.

Call Arity affects the compile times in two ways: It makes
them larger, because the compiler does more work. But it also
reduces them, as the compiler itself has been optimized more.
Table 2 shows the change in allocations done and time spent
by the compiler while running the nofib test suite, and the
change in time it takes to compile GHC itself (no allocation
numbers are collected for this case). We can see that the latter
is indeed happening – the number of allocations is reduced
despite the compiler doing more work – but it does not make
up for the increase in compilation time.

Compile Allocs Compile Time

nofib -1.8% +3.0%
GHC +3.5%

Table 2. Compilation performance
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5.3 Future work

5.3.1 Proofs of correctness

The equations of the analysis have grown in complexity
beyond the stage of being obviously correct, in particular
those for the co-call analysis of recursive bindings. It would
therefore be desirable to have a formal proof of correctness.
There are various notions of correctness of interest here.

(1) The transformation is semantics preserving.

(2) The specification (Section 3.1) is sufficient, i.e. if we have
results adhering to the specification, then eta-expansion
based on that does not worsen the program’s performance.

(3) Solutions to the equations (Section 3.2) indeed fulfill the
specification.

(4) The implementation calculates a correct solution to the
equations, and terminates.

For our toy lambda calculus, (1) is trivially true as eta-
expansion preserves the semantics with regard to the usual
reduction rules for the lambda calculus. If we were to extend
the language with side effects, or consider a semantics that
models heap space usage, or counts beta-reductions, this is
no longer the case; then the result depends on (2).

Point (2) is tricky because the specification is given in-
formally. In order to proof something here, we would have
to choose a semantics that allows us to formally express “e
does not call both x1 and x2”, just to be able to define the
specification. Then this semantics needs to be related to one
that measures performance in some way, and the no-worsen
property can be proven.

The former semantics would also be needed to prove (3).
We’d annotate the nodes of the syntax tree with the analysis
results, assume that the equations hold and proof that in the
end the observed calls behave like expected. This is likely the
most tractable and also most useful notion of correctness.

A semantics suitable for this might be Launchbury’s Nat-
ural Semantics for Lazy Evaluation [6], with modifications:
In a judgment Γ : e ⇓ ∆ : v, the context of e is lost, so at least
the size of the (implicit) stack could be added to the judg-
ments. Furthermore a field recording the calls, as a list of
variable-arity pairs, would have to be added to the judgment.

It would be sufficient to annotate bindings with the cal-
culated call-arity, and whether the binding was found to be
called at most once, as from this the analysis result can be
recovered. If the rules of the semantics put this information
onto the heap it can be verified that the calculated arity and
one-shotness matches the observed calls.

We believe that formal proofs in computer science should
be, if possible, machine checked. A formal development of
Launchbury’s semantics in Isabelle is available [1] and could
be used as a basis for this proof.

The forth notion of correctness would require a verified
compiler first; verifying GHC itself is beyond our reach at
this point. We can achieve some level of confidence in the cor-
rectness of Call Arity from the unit tests for the analysis and
from the benchmark suite, where every increase in allocation
would be an indication that something went wrong.

5.3.2 Improvements to the analysis

Call Arity does not fully exploit the behavior of thunks in
mutual recursion. Consider this example:

let go x = if x > 10 then x else go (t1 x)
t1 = if f (t2 a) then λy. go (y + 1) else λy. go (y + 1)

t2 = if f b then λy. go (y + 1)
in go 1 2.

Currently, Call Arity will refrain from eta-expanding t1 and
t2, as they are part of a recursive binding. But t2 is in fact
called at most once! All calls to t2 are done by t1, and t1’s
result will be shared.

It remains to be seen if such situations occur in the wild
and whether the benefits justify the implementation overhead.

6. Related work
Andrew Gill mentions in his thesis [5] on list fusion that eta-
expansion is required to make foldl a good consumer that
produces good code, and outlines a simple arity analysis. It
does not consider the issue of thunks and is equivalent to the
second refinement in Section 2.

6.1 GHC’s arity analyses

The compiler already comes with an arity analysis, which
works complementary to Call Arity: It ignores how a function
is being used and takes its definition into account. It traverses
the syntax tree and returns, for each expression, its arity, i.e.
the number of arguments the expression can be applied to
before doing any real work. This allows the transformation
to turn x ?(λy. e1) :(λy. e2) into λy. (x ? e1 : e2) on the grounds
that the check whether x is true or false is a negligible amount
of work, and it is therefore still better to eta-expand the
expression. Call Arity would refrain from doing this unless
it knows for sure that the expression is going to be called at
most once.

This arity analyzer can make use of one-shot annotations
on lambda binders. Such an annotation indicates that the
lambda will be called at most once, which allows the analysis
to derive greater arities and expand thunks: If the lambdas in
f x ?(λy. e1) :(λy. e2) are annotated as one-shot, this would be
expanded to λy. ( f x ? e1 : e2).

The working notes in [13] describe this analysis as the
forward arity analysis. Like Call Arity, it can only determine
arities of let-bound expression and will not make any use of
arity information on parameters. Consider, for example

let g = . . .
s f = f 3

in . . . (s g) . . .
where we would have a chance to find out that g is always
called with at least one argument. A backward arity analysis
capable of doing this is also described in [13]. This analysis
calculates the arity transformer of a function f, which indicates
the arities f calls its arguments with, given the arity f is called
with. It is not implemented in GHC as such, but subsumed by
the new combined strictness/demand/cardinality analyzer:
The function s would have a strictness signature of <C(S)>.
The latest description of this analyzer can be found in [10].

Neither of these two analyses is capable of transforming
the bad code from the introduction into the desired form. The
former has to abort as the expression f a can be expensive;
the latter looks at the definition of goB before analyzing the
body and is therefore unable to make use of the fact that goB
is always called with two arguments.

An integration of Call Arity into the demand analyzer
would be difficult because of the different order they analyze
the right-hand side and the body of a let-binding. In such
a combined analysis, every let expression would require a
fixpoint iteration to let information flow in both directions,
which is not feasible.
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There is, however, a potential for better integration of Call
Arity with other analyses and transformations by making
use of existing strictness and demand annotation, e.g. on
imported identifiers, as well as by passing information to
later phases: Thunks that Call Arity has determined to be
called at most once can be marked as one-shot, even if they
are not eta-expanded, and from the arity a function calls its
arguments with, its demand signature could be pre-seeded.

6.2 Explicit one-shot annotation

While pondering the issue of a well-fusing foldl, Call Arity
was competing with another way to solve the problem:

In that attempt we created a magic built-in function
oneShot :: (a → b) → a → b. It is semantically the iden-
tity, but the compiler may assume that oneShot f is applied
to its next parameter at most once. We can use this function
when implementing foldl in terms of foldr:

foldl k z xs = foldr (λv fn. oneShot (λz. fn (k z v))) id xs z
This solves our problem with the bad code generated for
sum (filter f [42 . . 2014 ]) from Section 5.1): The compiler sees

let go = λx. let r = if x == 2014 then id else go (x + 1)
in if f x then oneShot (λa. r (a + x)) else r

in go 42 0
and, because the λa is marked as oneShot, the existing arity
analysis will happily eta-expand go.

We decided to go the Call Arity route because it turned out
to be no less powerful than the explicit annotation, and has the
potential to optimize existing user code as well. Furthermore
oneShot is unchecked, i.e. the programmer or library author
has the full responsibility that the function is really applied
only once; with Call Arity the analysis ensures correctness of
the transformation.

6.3 unfoldr/destroy and Stream Fusion

There are various contenders to foldr/build-based list fusion,
such as unfoldr/destroy [11] and Stream Fusion [3]. They have
no problem fusing foldl, but have their own shortcomings,
such as difficulties fusing unzip, filter and/or concatMap; a
thorough comparison is contained in [2]. After twenty years,
this is still an area of active research [4].

These systems are in practical use in array computation
libraries like bytestring and vector. For the typical uses of
lists they are inferior to foldr/build-based fusion, and the latter
is still the system of choice for the standard Haskell list type.

6.4 Worker-wrapper list fusion

On the GHC mailing list, Akio Takano suggested an extension
to foldr/build-based list fusion that will generate good code
for left folds directly. The idea is that the consumer not only
specifies what the generator should use instead of the list
constructors (:) and [ ], but also a pair of worker-wrapper
functions. Slightly simplified, his definition of foldl in terms
of the extended foldrW is

foldl :: (b→ a→ b)→ b→ [a ]→ b
foldl f z = λxs. foldrW wrap unwrap g id xs z

where
wrap s e k a = k (s e a)
unwrap u = λe a. u e id a
g x next acc = next (f acc x).

The corresponding producer wraps the recursion in the pro-
vided wrapper. For example for [ from . . to ] the code reads

[ from . . to ] = buildW (eftFB from to)
eftFB from to wrap unwrap c n = wrap go from n

where

go = unwrap $ λi rest. if i 6 to
then c i (wrap go (i + 1) rest)
else rest.

The fusion rule is analogous to the foldr/buildr rule:
foldrW wrap unwrap c n (buildW g)

= g wrap unwrap c n.
This suggestion is currently under evaluation and still

fails in some cases where list fusion gives good results, but
overall it looks promising: Not only does it produce good code
directly, it even does so in tricky cases where eta-expansion is
not enough, like fusing foldl with a list produced by treeToList
(see Section 5.1.1). A prototype can be found at [12].
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