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Abstract
We prove that the Call Arity analysis and transformation, as
implemented in the Haskell compiler GHC, is safe, i.e. does
not impede the performance of the program. We formalized
syntax, semantics, the analysis and the transformation in
the interactive theorem prover Isabelle to obtain a machine-
checked proof and hence a level of rigor rarely obtained for
compiler optimization safety theorems. The proof is modular
and introduces trace trees as a suitable abstraction when
formally working with cardinality analyses.

Categories and Subject Descriptors D.1.1 [Programming
Techniques]: Applicative (Functional) Programming; D.3.4
[Programming Languages]: Processors—Optimization; F.3.2
[Logics and Meanings of Programs]: Semantics of Programming
Languages—Program analysis

Keywords functional programming, arity analysis, cardinal-
ity analysis, interactive theorem proving

1. Introduction
A lot of the fun in working on compilers, especially those that
are actively used, lies in coming up with clever analyses and
transformations that make the compiler produce better code.
Such developments are regularly the topic of well-received
academic publications. The emphasis in such papers tends
to be on the empirical side – awesome benchmark results,
elegant implementations, real-world impact.

A more formal, theoretical treatment is, however, not al-
ways given. Sometimes, a proof of functional correctness is in-
cluded, which shows that the transformation will not change
the meaning of the program. But for an optimization, we not
only care about its functional correctness but also that the
transformed program does not exhibit reduced performance.
This operational property, which we call safety, is invisible to
the semantics commonly employed in correctness proofs.

And even if a proof of safety is given, this is rarely per-
formed in a machine-verified way, which would provide the
highest level of assurance on the correctness of the proof.

In this work, we went all the way: We looked at the Call
Arity analysis, formalized it in the interactive theorem prover
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Isabelle and created a machine-checked proof not only of
functional correctness, but also that the performance of the
transformed program is not worse than the original one’s.

The Call Arity [4] analysis was recently added to GHC.
It combines a fairly straight-forward arity analysis with a
novel cardinality analysis based on co-call graphs to gain
more precision in the presence of recursion. This precision is
required to effectively allow foldl and related combinators to
take part in list fusion.

The cardinality analysis, which determines how often a
bound value is called, is required to eta-expand a thunk, as
that is only safe if the thunk is called once. If the cardinality
analysis were wrong and we would eta-expand a thunk that
is called multiple times, we would lose the benefits of sharing
and suddenly repeat work.

This would not be ruled out by simply proving correctness
with regard to a standard denotational semantics! Instead, a
more detailed semantics is required. We use a small-step op-
erational semantics akin to Sestoft’s mark 1 abstract machine,
which models an explicit heap and allows us to prove that the
number of heap allocations does not increase by transform-
ing the program. We argue that this is a suitable criterion for
safety.
Our contributions are:

• We prove that the Call Arity analysis is indeed safe, i.e. the
transformed program does not perform more allocations
than the original program.

• Our proof is modular. We cleanly separate the arity analy-
sis part (Sec. 4) from the cardinality part, and divide the
cardinality part into a three-stage refinement proof (Sec. 5).
This gives greater insight into their interaction, and pro-
vides reusable components for similar proofs.

• We introduce infinite trace trees (Sec. 5.2) as a suitable
domain for an abstract cardinality analysis, used in one of
the refinements.

• We formalized a suitable semantics akin to Sestoft’s mark 1
abstract machine, the Call Arity analysis, the transforma-
tion and the safety proof in the theorem prover Isabelle.
This gives us very high assurance in the correctness of this
work, but also provides a data point on the question of how
feasible machine-checked proofs of compiler transforma-
tions currently are. We discuss the development, including
the required effort and the remaining formalization gap,
in Sec. 6.

2. Overview and example
The remainder of the paper will be formal enough, so to give
a better intuition and overview, we look at a small example
before introducing the syntax, semantics, transformations and
analyses more rigorously in the following sections. A more
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elaborate motivation and explanation of the Call Arity analy-
sis, including its effect on list fusion and benchmark results,
can be found in [4].

2.1 From the example. . .

Consider the following program, written in some pure lazy
functional programming language with sharing, e.g. Haskell:

foo a = let t1 = f1 a in
let t2 = f2 a in
let g x = if p x else t1 in then g (x + t2 x)
g 1 2

Here two thunks, t1 and t2, are called from a recursive inner
function g. They are thunks because their definition is not in
head normal form, so upon their first call, f1 resp. f2 will be
called with the argument a, and the resulting value will be
stored and used in later invocations of t1 resp. t2.

Functional programs run faster if a function like g expects
as many parameters as possible [14]. We therefore want to
eta-expand its definitions to match the number of arguments
it is called with.

We can eta-expand g to take two parameters: It is called
with two arguments in the first place, and – assuming g is
called with two arguments – it calls itself with two arguments
as well. So we may transform the definition of g to

let g x y = (if p x else t1 then g (x + t2 x) ) y

We also see that both t1 and t2 are always called with one
argument. Can we eta-expand their definition to let t1 y = f1 a y
resp. let t2 y = f2 a y? It depends! If we eta-expand t1 then the
evaluation of f1 a will no longer be shared between multiple
invocations of t1. As we do not know anything about f1 we
have to pessimistically assume this to be an expensive oper-
ation that we must not suddenly repeat. Therefore, we can
only eta-expand t1 if we can guarantee that it is called at most
once.

That is why a good arity analyses needs the help of a
precise cardinality analysis. For t2, a conservative analysis will
tell us that it might be called multiple times by the recursive
function g, so we would not eta-expand t2. For t1, a precise
analysis might however be able to determine that it is called
at most once, allowing us to eta-expand its definition. How
could the analysis figure that out?

The body of g on its own calls both t2 and t1 at most once,
so having cardinality information for subexpressions is not
enough to attain such precision, and our cardinality analysis
needs to keep track of more. The Call Arity analysis comes
with a cardinality analysis based on the notion of co-call graphs.
In these (non-transitive) graphs edges connect variables that
might be called together. Analyzing the definition of g will
yield the graph gt2pt1 where we can spot
that g and t1 are not going to be called together. Together with
the fact that the body of the let-binding calls g at most once,
we can describe the calls originating from the whole let with
the graph t2pt1 where the absence of a loop at t1

implies the desired cardinality information.

2.2 . . . to the general case

This explanation might have been convincing for this example,
but how would we prove that the analysis and transformation
are safe in the general case?

In order to do so, we first need a suitable semantics. The
elegant standard denotational semantics for functional pro-
grams are unfortunately too abstract and admit no observa-

tion of program performance. Therefore, we use a standard
small-step operational semantics very close to Sestoft’s mark 1
abstract machine. It defines a relation (Γ, e, S) ⇒∗ (Γ′, e′, S′)
between configurations consisting of a heap, a control, i.e. the
current expression under evaluation, and a stack (Sec. 3).

With that semantics, we might measure performance by
counting evaluation steps. But that is too finegrained: Our eta-
expansion transformation causes additional beta-reductions
to be performed during evaluation, and without subsequent
simplification – which does happen in a real compiler, but
which we do not want to include in the proof – these increase
the number of steps in our semantics.

Therefore, we measure the performance by counting the
number of allocations performed during the evaluation. This
is sufficient to detect accidental duplication of work, as such
work could always involve allocations. It is also realistic:
When working on GHC, the number of bytes allocated by
the benchmarks and test cases is the prime measure that is
observed to detect improvements and regressions.

A transformation is safe in this sense if the transformed
program performs no more allocations than the original
program.

The arity transformation eta-expands expressions, so in
order to prove it safe, we need to identify conditions when
eta-expansion itself is safe and ensure that these conditions
are always met.

A sufficient condition for the safety of an n-fold eta-
expansion of an expression e is that whenever e is evaluated,
the top n elements on the stack are arguments, as stated in
Lemma 1. The safety proof for the arity analysis (Lemma 2)
keeps track of some invariants during the evaluation which
ensure that we can apply Lemma 1 whenever an eta-expanded
expression is about to be evaluated.

The proof is first performed for a naive arity analysis
without a cardinality analysis, before formally introducing the
concept of a cardinality analysis in Sec. 5. We do not simply
prove safety of the co-call graph based analysis directly, but
split it up into a series of increasingly concrete proofs, for two
reasons:

• It is nice to separate various aspects of the proof (e.g.
the interaction of the arity analysis with the cardinality
analysis; the gap between the steps of the semantics and
the structural recursive nature of the analysis; different
treatments of recursive and non-recursive bindings) into
individual steps, but more importantly

• while the co-call graph data structure is sufficiently expres-
sive to implement the analysis, it is an unsuitable abstrac-
tion for the safety proof, as it cannot describe the recursion
patterns of a heap, where some variables are calling each
other in a nice, linear fashion among other, more complex
recursion patterns.
In the first iteration, the cardinality analysis is completely

abstract: Its input is the whole configuration and its result
is simply which variables on the heap are going to be called
more than once. We give conditions (Definition 6) when an
arity analysis using this cardinality analysis is safe (Lemma 3).
In our example, after t1, t2 and g have been put on the heap,
this analysis would find out that t2 and g are called more than
once, but not t1.

The next iteration assumes a cardinality analysis that
now looks just at expressions, not whole configurations, and
returns a much richer analysis result: A trace tree, which is a
(possibly) infinite tree where each path corresponds to one
possible execution and the edges are labeled by the variables
called during that evaluation.
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v, x, y, z : Var variables

e : Expr expressions

e ::= x variable

| e x application

| λx. e lambda abstraction

| Ct, Cf constructors

| e ? et : ef case analysis

| let Γ in e mutually recursive bindings

Γ, ∆ : Var ⇀ Expr heaps, bindings

Figure 1. A simple lambda calculus

Given such a trace tree analysis, an abstract analysis as
described in the first iteration can be implemented: The trees
describing the expressions of a configuration can be combined
to a tree describing the behavior of the whole configuration.
This calculation, named s in Sec. 5.2, is quite natural for trace
trees, but would be hard to define on co-call graphs only. From
that tree, the cardinalities of the individual variables can be
determined. We specify conditions on the trace tree analysis
(Definition 9) and show them to be sufficient to fulfill the
specification of the first iteration (Lemma 4).

In our example, after g has been put on the heap, the tree
corresponding to the definition of g, namely

g
t2
t1p

can be combined with the very simple tree g from the
body of the let to form the infinite tree

g
t2
t1pg

t2
t1pg

t2
t1pg

which describes the overall sequence of calls. Clearly, on every
possible path, t1 is called at most once.

The third and final iteration assumes an analysis that
returns a co-call graph for each expression. Co-call graphs
can be seen as compact approximations of trace trees, with
edges between variables that can occur on the same path in
the tree. The specification in Definition 10 is shown to be
sufficient (Lemma 5).

Eventually, we give the definition of the real Call Arity
analysis in Sec. 5.4, and as it fulfills the specification of the
final iteration, the desired safety theorem (Theorem 1) follows.

The following three quite technical sections necessarily
omit some detail, especially in the proofs. But since the
machine-checked formalization exists, such omissions needn’t
cause worry. The full Isabelle code is available at [3]; the
proof document contains a table that maps the definitions
and lemmas of this paper to the corresponding entities in the
Isabelle development.

3. Syntax and semantics
Call Arity operates on GHC’s intermediate language Core,
but that is too large for our purposes: The analysis completely
ignores types, so we would like to work on an untyped repre-
sentation. Additionally, we do not need the full expressiveness
of algebraic data types, so we use booleans (Ct, Cf ) with an

(Γ, e x, S)⇒ (Γ, e, $x·S) APP1

(Γ, λy. e, $x·S)⇒ (Γ, e[y := x], S) APP2

(x 7→ e) ∈ Γ =⇒ (Γ, x, S)⇒ (Γ \ x, e, #x·S) VAR1

isVal(e) =⇒ (Γ, e, #x·S)⇒ (Γ[x 7→ e], e, S) VAR2

(Γ, (e ? et : ef ), S)⇒ (Γ, e, (et : ef )·S) IF1

b ∈ {t, f} =⇒ (Γ, Cb, (et : ef )·S)⇒ (Γ, eb, S) IF2

dom∆ ∩ fv(Γ, S) = {} =⇒
(Γ, let ∆ in e, S)⇒ (∆ · Γ, e, S) LETREC

Figure 2. The operational semantics

if-then-else construct as representatives for data types and
case expressions.

Our syntax is given in Figure 1. The bindings of a let are
represented as finite maps from variables to expressions; the
same type is used to describe a heap.

Like Launchbury [11] and Sestoft [18], we require appli-
cation arguments to be variables. This way, it is sufficient to
model sharing for let-bound expressions.

We denote the set of free variables of an expression e
with fv(e), and e[x := y] is the expression e with every free
occurrence of the variable x replaced by y. The predicate
isVal(e) is true if e is a lambda abstraction or a constructor,
and false otherwise.

The set dom Γ := {x | (x 7→ e) ∈ Γ} contains all names
bound in Γ, while thunks Γ := {x | (x 7→ e) ∈ Γ, ¬ isVal(e)}
contains just those that are bound to thunks.

The proper treatment of names is the major technical
hurdle when rigorously formalizing anything related to the
lambda calculus. We employ Nominal Logic [20] here, so the
lambda abstractions and bindings are proper equivalency
classes, i.e. λx. x = λy. y.

A configuration (Γ, e, S) consists of the heap Γ, the control
e and the stack S. The stack is constructed from

• the empty stack, [],
• arguments, written $x·S,
• update markers, written #x·S, and
• alternatives of conditionals, written (e1 : e2)·S.

Throughout this work we assume all configurations to be good,
i.e. dom Γ and #S := {x | #x ∈ S} are disjoint and the update
markers on the stack are distinct.

Following Sestoft [18], we define the semantics via the
single step relation⇒, defined in Figure 2. We write⇒∗ for
the reflexive transitive closure of this relation.

In the interest of naming hygiene, the names for the new
bindings in the LETREC rule have to be fresh with regard to
what is already present on the heap and stack, as ensured by
the side-condition.

An interesting side-effect is that this rule, and hence the
whole semantics, is technically not deterministic, as there is an
infinite number of valid names that can be used when putting
the bindings onto the heap. A nice consequence of this is
that our proofs cannot make short-cuts using determinism, so
adding “real” nondeterminism should not pose a problem.

Note that the semantics takes good configurations to good
configurations.

This semantics is equivalent to Launchbury’s natural se-
mantics [11], which in turn is correct and adequate with re-
gard to a standard denotational semantics; these proofs are
machine-verified as well [2].
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3.1 Arities and Eta-Expansion

Eta-expansion replaces an expression e by (λx. e x). The n-fold
eta-expansion is described by En(e) := (λz1 . . . zn. e z1 . . . zn),
where the zi are distinct and fresh with regard to e. We thus
consider an expression e to have arity α ∈N if we can replace
it by Eα(e) without negative effect on the performance.

Other analyses determine the arity based on the definition
of e, i.e. its internal arity [21]. Here, we treat e as a black box
and instead look its context to determine its external arity. For
that, we can give an alternative definition: An expression e
has arity α if upon every evaluation of e, there are at least α
arguments on the stack.

If an expression has arity α, then it also has arity α′ for
α′ ≤ α; every expression has arity 0. Our lattice hence is:

· · · < 3 < 2 < 1 < 0.

We want α− 1 to be defined everywhere, so here, 0− 1 = 0.
By convention, ᾱ is a partial map from variables to arities, and
α̇ a list of arities.

4. Arity analyses
An arity analysis is thus a function that, given a binding
(consisting of the bound values Γ and the body e), determines
the arity of each of the bound values. It depends on the
number α of arguments passed to e and may return ⊥ for
a bound value that is not called at all:

Aα(Γ, e) : Var→N⊥.

Given such an analysis, we can run it over a program and
transform it accordingly. We traverse the syntax tree, while
keeping track of the number of arguments passed:

Tα(x) = x
Tα(e x) = Tα+1(e) x

Tα(λx. e) = (λx.Tα−1(e))
Tα(Cb) = Cb for b ∈ {t, f}

Tα(e ? et : ef ) = T0(e) ?Tα(et) :Tα(ef )

Tα(let Γ in e) = let TAα(Γ,e)(Γ) in Tα(e)

The actual transformation happens at a binding, where
we eta-expand bindings according to the result of the arity
analysis. If the analysis determines that a binding is never
called, we simply leave it alone:

Tᾱ(Γ) =
[

x 7→
{

e if ᾱ(x) = ⊥
Eα(Tα(e)) if ᾱ(x) = α

}∣∣∣(x 7→ e) ∈ Γ
]
.

As motivated earlier, we consider an arity analysis A
safe when the transformed program does not perform more
allocations than the original program. A – technical – benefit
of this measure is that the number of allocations made always
equals the size of the heap plus the number of update markers
on the stack, as no garbage collector is modeled in our
semantics:

Definition 1 (Safe transformation) A program transforma-
tion T is safe if for every execution

([], e, [])⇒∗ (Γ, v, [])

with isVal(v), there is an execution

([],T(e), [])⇒∗ (Γ′, v′, [])

with isVal(v′) and | dom Γ′| ≤ | dom Γ|.
An arity analysis A is safe if the transformation based on

it is safe. 2

Specification We begin by stating sufficient conditions for
an arity analysis to be safe. In order to phrase the conditions,
we also need to know the arities an expression e calls its free
variables with, assuming it is itself called with α arguments:

Aα(e) : Var→N⊥

For notational simplicity, we define A⊥(e) := ⊥.
The specification consists of a few naming hygiene condi-

tions and an inequality for most syntactical constructs:

Definition 2 (Arity analysis specification)

domAα(e) ⊆ fv e (A-dom)
domAα(Γ, e) ⊆ dom Γ (Ah-dom)

z /∈ {x, y} =⇒ Aα(e[x := y]) z = Aα(e) z (A-subst)
x, y /∈ dom Γ =⇒

Aα(Γ[x := y], e[x := y]) = Aα(Γ, e) (Ah-subst)
[x 7→ α] v Aα(x) (A-Var)

Aα+1(e) t [x 7→ 0] v Aα(e x) (A-App)
Aα−1(e) \ {x} v Aα(λx. e) (A-Lam)

A0(e) tAα(et) tAα(ef ) v Aα(e ? et : ef ) (A-If)

AAα(Γ,e)(Γ) tAα(e) v Aα(Γ, e) tAα(let Γ in e)
(A-Let)

where

Aα(Γ) :=
⊔ {
A(α x)(e)

∣∣(x 7→ e) ∈ Γ, α x 6= ⊥
}

.
2

These conditions come quite naturally: An expression
should not report calls to variables that it does not know
about. Replacing one variable by another should not affect
the arity other variables. A variable, evaluated with a certain
arity, should report (at most) that arity.

In the rules for application and lambda abstraction we
keep track of the number of arguments. We also assume
that the analysis is not higher-order, e.g. for an expression
e x, nothing useful is known on how x is called. This means
that the following proofs needs modifications before they can
applied to such an extended analysis.

In rule (A-If), the scrutinee is evaluated without arguments,
hence is analyzed with arity 0.

The rule (A-Let) is a concise way to capture a few require-
ments. Note that, by (A-dom) and (Ah-dom), the domains of
Aα(Γ, e) and Aα(let Γ in e) are disjoint, i.e. Aα(Γ, e) contains
the information on how the variables of the current binding
are called, while Aα(let Γ in e) informs us about the free vari-
ables. The left-hand side contains all possible calls, both from
the body of the binding and from each bound expression.
These are analyzed with the arity reported by Aα(Γ, e), which
anticipates the fixed-point iteration in the implementation of
the analysis.

These conditions are sufficient to prove functional correct-
ness, i.e.

JT0(e)K = JeK,

holds, but not safety, as the issue of thunks is not touched
upon yet. Without the aid of a cardinality analysis, an arity
analysis has to simply give up when it comes across a thunk:

Definition 3 (No-cardinality analysis specification)

x ∈ thunks Γ =⇒ Aα(Γ, e) x = 0 (Ah-thunk)
2
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Safety The safety of an eta-expanding transformation rests
on the simple observation that, given enough arguments
on the stack, the eta-expanded expression evaluates to the
original expression:

Lemma 1 (Safety of eta-expansion)

(Γ, Eα(e), $x1 · · · $xα·S)⇒∗ (Γ, e, $x1 · · · $xα·S) 2

PROOF

(Γ, Eα(e), $x1 · · · $xα·S)
= (Γ, (λz1 . . . zα. e z1 . . . zα), $x1 · · · $xα·S)
⇒∗(Γ, e x1 . . . xα, S) { by APP2 }
⇒∗(Γ, e, $x1 · · · $xα·S) { by APP1 } �

So the safety proof for the whole transformation now just
has to make sure that whenever we evaluate an eta-expanded
value, there are enough arguments on top of the stack. Let
args(S) denote the number of arguments on top of the stack.

During evaluation, we need to construct the transformed
configurations. Therefore, we need to keep track of the arity
argument to each contained expressions: those on the heap,
the control and those in alternatives on the stack. Together,
these arguments form an arity annotation written (ᾱ, α, α̇).
Given such an annotation, we can transform a configuration:

T(ᾱ,α,α̇)((Γ, e, S)) = (Tᾱ(Γ),Tα(e), Ṫα̇(S))

where the stack is transformed by

Ṫα·α̇((et : ef )·S) = (Tα(et) : Tα(ef ))·Ṫα̇(S)

Ṫα̇($x·S) = $x·Ṫα̇(S)

Ṫα̇(#x·S) = #x·Ṫα̇(S)

Ṫα̇([]) = [].

While carrying the arity annotation through the evaluation
of our programs, we need to ensure that it stays consistent
with the current configuration.

Definition 4 (Arity annotation consistency) An arity anno-
tation is consistent with a configuration, written (ᾱ, α, α̇) .
(Γ, e, S), if

• dom ᾱ ⊆ dom Γ ∪ #S,
• args(S) v α,
•
(
Aα(Γ) tAα(e) t Ȧα̇(S)

)∣∣
dom Γ∪#S v α, where

Ȧ[]([]) := ⊥
Ȧα·α̇((et : ef )·S) := Aα(et) tAα(ef ) t Ȧα̇(S)

Ȧα̇($x·S) := [x 7→ 0] t Ȧα̇(S)

Ȧα̇(#x·S) := [x 7→ 0] t Ȧα̇(S), and

• α̇ . S, defined as

[] . []

α·α̇ . (et : ef )·S ⇐⇒ α̇ . S ∧ args(S) v α

α̇ . $x·S ⇐⇒ α̇ . S
α̇ . #x·S ⇐⇒ α̇ . S. 2

As this definition does not consider the issue of thunks, we
extend it to

Definition 5 (No-cardinality arity annotation consistency)
defined as (ᾱ, α, α̇) .N (Γ, e, S), iff (ᾱ, α, α̇) . (Γ, e, S) and
ᾱ x = 0 for all x ∈ thunks Γ. 2

We did not include this requirement in definition of . as we
want to use that later, when we add a cardinality analysis.

Clearly (⊥, 0, []) is a consistent annotation for an initial
configuration ([], e, []). We will take consistently annotated
configurations to consistently annotated configurations dur-
ing the evaluation – with one exception, which causes a minor
technical overhead. Note that the semantics will, upon evalu-
ating a variable, always take the binding off the heap, even if
it is already a value:

(Γ[x 7→ (λy. y)], x, S)⇒ (Γ, (λy. y), #x·S)
⇒ (Γ[x 7→ (λy. y)], (λy. y), S)

We would not be able to prove consistency in the intermediate
state. To work around this issue, assume that rule VAR1 had
an additional constraint ¬ isVal(e) and that the rule

(x 7→ e) ∈ Γ, isVal(e) =⇒ (Γ, x, S) ⇒ (Γ, e, S) (VAR′1)

is added. This modification makes the semantics skip over
one step, which is fine (and closer to what happens in reality).

Lemma 2 Assume A fulfills the Definitions 2 and 3.
If we have (Γ, e, S) ⇒∗ (Γ′, e′, S′) and (ᾱ, α, α̇) .N (Γ, e, S),

then there exists an arity annotation (ᾱ′, α′, α̇′) with (ᾱ′, α′, α̇′) .N

(Γ′, e′, S′), and T(ᾱ,α,α̇)((Γ, e, S))⇒∗ T(ᾱ′ ,α′ ,α̇′)((Γ
′, e′, S′)). 2

PROOF by the individual steps of⇒∗.
For example, for APP1 we have

Aα+1(e) t Ȧα̇($x·S) = Aα+1(e) t [x 7→ 0] t Ȧα̇(S)

v Aα(e x) t Ȧα̇(S)

using (A-App) and the definition of Ȧ. So with (ᾱ, α, α̇) .N

(Γ, e x, S) we have (ᾱ, α + 1, α̇) .N (Γ, e, $x·S). Furthermore

T(ᾱ,α,α̇)((Γ, e x, S)) = (Tᾱ(Γ), (Tα+1(e)) x, Ṫα̇(S))

⇒ (Tᾱ(Γ),Tα+1(e), $x·Ṫα̇(S))
= T(ᾱ,α+1,α̇)((Γ, e, $x·S))

by rule APP1.
The other cases follow this pattern, where the inequalities

in Definition 2 ensure the preservation of consistency.
In case VAR1 the variable x is bound to a thunk. From

consistency we obtain ᾱ x = 0, so we can use E0(T0(e)) =
T0(e). Similarly, α = ᾱ x = 0 holds in case VAR2.

The actual eta-expansion is treated is case VAR′1: We have

args(Ṫα̇(S)) = args(S) v α v Aα(x) x v ᾱ x,

from consistency and (A-Var) and hence

T(ᾱ,α,α̇)((Γ, x, S))⇒ (Tᾱ(Γ), Eᾱ x(Tᾱ x(e)), Ṫα̇(S)) { VAR′1 }

⇒∗(Tᾱ(Γ),Tᾱ x(e), Ṫα̇(S)) by {Lemma 1}
= T(ᾱ,ᾱ x,α̇)((Γ, e, S)).

Case LET1: The new variables in ∆ are fresh with regard to Γ
and S, hence also with regard to ᾱ according to the naming
hygiene conditions in (ᾱ, α, α̇) .N (Γ, let ∆ in e, S). So in order
to have (Aα(∆, e) t ᾱ, α, α̇) . (∆ · Γ, e, S), it suffices show

(AAα(∆,e)(∆) tAα(e))
∣∣
dom∆∪dom Γ∪#S v Aα(∆, e) t ᾱ,

which follows from (A-Let) and Aα(let ∆ in e)
∣∣
dom Γ∪#S v ᾱ.

The requirement Aα(∆, e) x = 0 for x ∈ thunks∆ holds by
(Ah-thunk). �

The main take-away of this lemma is the following corol-
lary, which states that the transformed program performs the
same number of allocations as the original program.
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Corollary 1 The arity analysis is safe (in the sense of Definition 1):
If ([], e, []) ⇒∗ (Γ, v, []), then there exists Γ′ and v′ such that
([],T0(e), []) ⇒∗ (Γ′, v′, []) where Γ and Γ′ contain the same
number of bindings. 2

PROOF We have (⊥, 0, []) .N ([], e, []), so Lemma 2 gives us ᾱ,
α and α̇ so that T(⊥,0,[])(([], e, [])) ⇒∗ T(ᾱ,α,α̇)((Γ, v, [])). The
corollary holds because Γ and Tᾱ(Γ) bind the same variables,
and Ṫα̇([]) = []. �

4.1 A concrete arity analysis

So far, we have a specification for an arity analysis and a proof
that every analysis that fulfills the specification is safe.

One possible implementation is the trivial arity analysis,
which does not do anything useful and simply returns the
most pessimistic result: Aα(e) := [x 7→ 0 | x ∈ fv e] and
Aα(Γ, e) := [x 7→ 0 | x ∈ dom Γ].

A more realistic arity analysis is defined by

Aα(x) := [x 7→ α]

Aα(e x) := Aα+1(e) t [x 7→ 0]
Aα(λx. e) := Aα−1(e) \ {x}

Aα(e ? et : ef ) := A0(e) tAα(et) tAα(ef )
Aα(Cb) := ⊥ for b ∈ {t, f}

Aα(let Γ in e) :=

(µᾱ. Aᾱ(Γ) tAα(e) t [x 7→ 0 | x ∈ thunks Γ]) \ dom Γ

and

Aα(Γ, e) :=

(µᾱ. Aᾱ(Γ) tAα(e) t [x 7→ 0 | x ∈ thunks Γ])
∣∣
dom Γ

where (µᾱ. . . .) denotes the least fixed point, which exists as
the involved operations are continuous and monotone in ᾱ.
Moreover, the fixed point can be found in a finite number of
steps by iterating from⊥, as the carrier of ᾱ is bounded by the
finite set fv Γ ∪ fv e, and the pointwise partial order on Arities
has no infinite ascending chains. As this ignores the issues of
thunks, it corresponds to the analysis described by Gill [8].

This implementation fulfills Definition 2 and Definition 3,
so by Corollary 1, it is safe.

5. Cardinality analyses
The previous section proved the safety of a straight-forward
arity analysis. But it was severely limited by not being able to
eta-expand thunks, which is desirable in practice.

5.1 Abstract cardinality analysis

So the arity analysis needs an accompanying cardinality analy-
sis which determines how often a bound value is going to be
evaluated: This is modeled as a function

Cα(Γ, e) : Var→ Card

where Card is the three element lattice

⊥ < 1 < ∞,

corresponding to “no called”, “called at most once” and “no
information”, respectively. We use γ for an element of Card
and γ̄ for a mapping Var→ Card.

The expression γ̄− x, which subtracts one call from the
prognosis, is defined as

(γ̄− x) y =

{
⊥ if y = x and γ̄ y = 1
γ̄ y otherwise.

Specification We start with a very abstract specification for
a safe cardinality analysis and prove that an arity transforma-
tion using it is still safe. We stay oblivious in how the analysis
works and defer that to the next refinement step in Section 5.2.

For the specification we not only need the local view on
one binding, as provided by Cα(Γ, e), but also a prognosis on
how often each variable is called by a complete and arity-
annotated configuration:

C(ᾱ,α,α̇)((Γ, e, S)) : Var→ Card

Definition 6 (Cardinality analysis specification) The cardi-
nality prognosis and cardinality analysis fulfill some obvious
naming hygiene conditions:

dom Cα(∆, e) = domAα(∆, e) (Ch-dom)
dom C(ᾱ,α,α̇)((Γ, e, S)) ⊆ fv Γ ∪ fv e ∪ fv S (C-dom)

ᾱ
∣∣
dom Γ = ᾱ′

∣∣
dom Γ =⇒
C(ᾱ,α,α̇)((Γ, e, S)) = C(ᾱ′ ,α,α̇)((Γ, e, S)) (C-cong)

ᾱ x = ⊥ =⇒
C(ᾱ,α,α̇)((Γ, e, S)) = C(ᾱ,α,α̇)((Γ \ {x}, e, S))

(C-not-called)

Furthermore, the cardinality analysis is not higher order and
hence has to be conservative about function arguments:

$x ∈ S =⇒ [x 7→ ∞] v C(ᾱ,α,α̇)((Γ, e, S)) (C-args)

The prognosis may ignore update markers on the stack:

C(ᾱ,α,α̇)((Γ, e, #x·S)) v C(ᾱ,α,α̇)((Γ, e, S)) (C-upd)

An imminent call is prognosed:

[x 7→ 1] v C(ᾱ,α,α̇)((Γ, x, S)) (C-call)

Evaluation improves the prognosis: Note that in (C-Var1) and
(C-Var′1), we account for the call to x with the − operator.

C(ᾱ,α+1,α̇)((Γ, e, $x·S)) v C(ᾱ,α,α̇)((Γ, e x, S)) (C-App)

C(ᾱ,α−1,α̇)((Γ, e[y := x], S)) v C(ᾱ,α,α̇)((Γ, λy. e, $x·S))
(C-Lam)

(x 7→ e) ∈ Γ, ¬ isVal(e) =⇒
C(ᾱ,ᾱ x,α̇)((Γ \ {x}, e, #x·S)) v C(ᾱ,α,α̇)((Γ, x, S))− x

(C-Var1)
(x 7→ e) ∈ Γ, isVal(e) =⇒

C(ᾱ,ᾱ x,α̇)((Γ, e, S)) v C(ᾱ,α,α̇)((Γ, x, S))− x
(C-Var′1)

isVal(e) =⇒
C(ᾱ,0,α̇)((Γ[x 7→ e], e, S)) v C(ᾱ,0,α̇)((Γ, e, #x·S))

(C-Var2)
C(ᾱ,0,α·α̇)((Γ, e, (et : ef )·S)) v C(ᾱ,α,α̇)((Γ, e ? et : ef , S))

(C-If1)
b ∈ {t, f} =⇒

C(ᾱ,α,α̇)((Γ, eb, S)) v C(ᾱ,0,α·α̇)((Γ, Cb, (et : ef )·S))
(C-If2)

The specification for the let-bindings connects the arity analy-
sis, the cardinality analysis and the cardinality prognosis:

dom∆ ∩ fv(Γ, S) = {}, dom ᾱ ⊆ dom Γ ∪ #S =⇒
C(Aα(∆,e)tᾱ,α,α̇)((∆ · Γ, e, S)) v

Cα(∆, e) t C(ᾱ,α,α̇)((Γ, let ∆ in e, S)) (C-Let)
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Finally, we need an equivalent to Definition 3 that restricts
the arity analysis only for thunks that might be called more
than once:

x ∈ thunks Γ, Cα(Γ, e) x = ∞ =⇒ Aα(Γ, e) x = 0
(Ah-∞-thunk)

2

Safety The safety proof proceeds similarly to the one in
Lemma 2. But now we are allowed to eta-expand thunks
that are called at most once. This has considerable technical
implications for the proof:

• In the transformed program, the eta-expanded expression
is now a value, so VAR2 occurs immediately after VAR1. In
the original program, however, an update marker stays on
the stack until the expression is evaluated to a value, and
then VAR2 fires without a correspondence in the evaluation
of the transformed program. In particular, it can interfere
with uses of Lemma 1.

• Because the eta-expanded expression is now a value, it
stays on the heap as it is, whereas in the original program,
it is first evaluated. Evaluation can reduce the number of
free variables of the expression, so subsequent choices of
fresh variables in LET1 in the original evaluation might not
be suitable in the evaluation of the transformed program.

A more complicated variant of Lemma 1 and carrying a vari-
able renaming around throughout the proof might solve these
problems, but would complicate it too much. We therefore ap-
ply a small trick, and simply allow unwanted update markers
to disappear, by defining a variant of the semantics:

Definition 7 (Forgetful semantics) The relation ⇒# is de-
fined by

(Γ, e, S)⇒ (Γ′, e′, S′) =⇒ (Γ, e, S)⇒# (Γ′, e′, S′).

and

(Γ, e, #x·S)⇒# (Γ, e, S) DROPUPD

2

This way, a one-shot binding can disappear completely
after it has been called, making it easier to relate the original
program to the transformed program. Because⇒# contains
⇒, Lemma 1 holds here as well. Afterwards and outside
the scope of the safety proof, we will recover the original
semantics from the forgetful semantics.

In the proof we keep track of the set of removed bindings
(named r), and write (Γ, e, S) − r := (Γ \ r, e, S − r) for the
configuration with bindings from the set r removed. The stack
(S− r) is S without the update markers #x where x ∈ r.

We also keep track of γ̄ : Var → Card, which remembers
the current cardinality of the variables in the configuration:

Definition 8 (Cardinality arity annotation consistency) We
write (ᾱ, α, α̇, γ̄, r) .C (Γ, e, S), iff

• the arity information is consistent, (ᾱ, α, α̇) . (Γ, e, S)− r,
• dom ᾱ = dom γ̄,
• the cardinality information is correct, C(ᾱ,α,α̇)((Γ, e, S)) v γ̄,
• many-called thunks are not going to be eta-expanded, i.e.

ᾱ x = 0 for x ∈ thunks Γ with γ̄ x = ∞ and
• only bindings that are not going to be called (γ̄ x = ⊥) are

removed, i.e. r ⊆ (dom Γ ∪ #S)− dom γ̄. 2

Lemma 3 Assume A and C fulfill the specifications in Defini-
tions 2 and 6.

If (Γ, e, S) ⇒∗ (Γ′, e′, S′) and (ᾱ, α, α̇, γ̄, r) .C (Γ, e, S) ,
then there exists (ᾱ′, α′, α̇′, γ̄′, r′) such that (ᾱ′, α′, α̇′, γ̄′, r′) .C

(Γ′, e′, S′), and T(ᾱ,α,α̇)((Γ, e, S)− r)⇒∗# T(ᾱ′ ,α′ ,α̇′)((Γ
′, e′, S′)−

r′). 2

The lemma is an analog to Lemma 2. The main difference,
besides the extra data to keep track of, is that we produce
an evaluation in the forgetful semantics, with some bindings
removed.

PROOF by the individual steps of ⇒∗. The preservation of
the arity annotation consistency in the proof of Lemma 2
can be used here as well. Note that both the arity annotation
requirement and the transformation are applied to (Γ, e, S)− r,
so this goes well together. The correctness of the cardinality
information (the second condition in Definition 8) follows
easily from the inequalities in Definition 6.

We elaborate only on the interesting cases:
Case VAR1: We cannot have γ̄ x = ⊥ because of (C-call). If
γ̄ x = ∞ we get ᾱ x = 0, as before, and nothing surprising
happens.

If γ̄ x = 1, we know that this is the only call to x, so we set
r′ = r ∪ {x}, γ̄′ = γ̄− x and use DROPUPD to get rid of the
mention of #x on the stack.
Case VAR2: If x /∈ r, proceed as before. If x ∈ r, then
the transformed configurations are identical and the ⇒∗#
judgment follows from reflexivity.
Case LET1: Besides the usual calculations about scoping
and freshness, we use the specification rules (C-Let) and
(Ah-∞-thunk) to ensure that (∆ · Γ, e, s) .C (Aα(∆, e) t
ᾱ, α, α̇, Cα(∆, e) t γ̄, r) holds. �

Corollary 2 The cardinality based arity analysis is safe for closed
expressions, i.e. if fv e = {} and ([], e, [])⇒∗ (Γ, v, []) then there
exists Γ′ and v′ such that ([],T0(e), [])⇒∗ (Γ′, v′, []) where Γ and
Γ′ contain the same number of bindings. 2

PROOF We need fv e = {} to have C⊥,0,[](([], e, [])) = ⊥, so
that (⊥, 0, [],⊥, []) .C ([], e, []) holds. Now Lemma 2 gives us ᾱ,
α, α̇ and r so that T(⊥,0,[])(([], e, []))⇒∗# T(ᾱ,α,α̇)((Γ, v, [])− r).

As the forgetful semantics only drops unused bindings,
but does not otherwise behave any different than the real
semantics, a somewhat technical lemma allows us to re-
cover T(⊥,0,[])(([], e, []))⇒∗ T(ᾱ,α,α̇)((Γ

′, v, [])) for a Γ′ where
Tᾱ(Γ) − r = Γ′ − r′. As r ⊆ Γ and r′ ⊆ Γ′, this concludes
the proof of the corollary: Γ, Tᾱ(Γ) and Γ′ all bind the same
variables. �

5.2 Trace tree cardinality analysis

In the second refinement, we look – still quite abstractly –
at the implementation of the cardinality analysis. For the
arity information, the type of the result required for the
transformation (Var→N⊥) was sufficiently rich to be used
in the analysis as well. This is unfortunately not the case for
the cardinality analysis: Even if we know that an expression
calls x and y each at most once, this does not tell us whether
these calls can occur together (as in e x y) or whether they are
exclusive (as in e ? x : y).

So we need a richer type that captures the future calls of
an expression, can distinguish different code paths and maps
easily to Var→N⊥: The type TTree of (possibly infinite) trees,
where each edge is labeled with variable name, and a node
has at most one outgoing edge for each variable name. The
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paths in the tree correspond to the possible executions of an
expression (or a whole configuration), and the labels on the
edges record each occurring variable call. We use t for values
of type TTree.

There are other, equivalent ways to interpret this type:
Each TTree corresponds to a non-empty set of (finite) lists of
variable names that is prefixed-closed (i.e. for every set in the
list, its prefixes are also in the set). Each such list corresponds
to a (finite) path in the tree. The function paths : TTree→ 2[Var]

implements this correspondence.
Another view is given by the function

next : Var→ TTree→ TTree⊥,

where next x t = t′ iff the root of t has an edge labeled
x leading to t′, and next x t = ⊥ if the root of t has no
edge labeled x. In that sense, TTree represents automata with
labeled transitions.

The basic operations on trees are ⊕, given by paths(t ⊕
t′) = paths t ∪ paths t′, and ⊗, where paths(t⊗ t′) is the set
of all interleavings of lists from paths t with lists from paths t′.
We write t∗ for t ⊗ t ⊗ t ⊗ · · · . A tree is called repeatable if
t = t⊗ t = t∗.

The partial order used on TTree is t v t′ ⇐⇒ paths t ⊆
paths t′. We write • for the tree with no edges. The tree with
exactly one edge labeled x is simply written x. The tree t \V
is t with all edges with labels in V contracted, t

∣∣
V is t with all

edges but those labeled with variables in V contracted.
If we have a binding (Γ, e), and for e as well as for all

bound expressions, we have a TTree describing their calls,
how would we combine that information? A first attempt
might be a function s : (Var → TTree) → TTree → TTree
defined by

next x (s t̄ t) :=

{
⊥ if next x t = ⊥
s t̄ (t′ ⊗ t̄ x) if next x t = t′,

that traverses the tree and upon every call interleaves the tree
of the called expressions with the remainder of the current
tree.

This is a good start, but it does not cater for thunks, where
the first evaluation behaves differently from later evaluations.
Therefore, we have to tell s what variables are bound to
thunks, and give them special treatment: After a variable
referring to a thunk is evaluated, we pass on a modified map
where t̄ x = •.

Hence s : 2Var → (Var → TTree) → TTree → TTree is
defined by

next x (sT t̄ t)

:=


⊥ if next x t = ⊥
sT t̄ (t′ ⊗ t̄ x) if next x t = t′, x /∈ T
sT (t̄[x 7→ •]) (t′ ⊗ t̄ x) if next x t = t′, x ∈ T.

The ability to define this function (relatively) easily is the
main advantage of working with trace trees instead of co-call
graphs at this stage.

We project a TTree to a value of type (Var → N⊥), as
required for a cardinality analysis, using c : TTree→ (Var→
N⊥) defined by

c(t) x :=


⊥, if x does not occur in t
1, if on each path in t, x occurs at most once
∞, otherwise.

Specification A tree cardinality analysis determines for ev-
ery expression e and arity α the tree Tα(e) of calls to free
variables of e which are performed by evaluating e with α
arguments and using the result. As the resulting value might
be passed to unknown code or stored in a data structure,
we cannot assume anything about how often the resulting
value is used. This justifies the arity parameter: We expect
T0(λx. y) = y∗ but T1(λx. y) = y.

We write Tᾱ(Γ) for the analysis lifted to bindings, returning
⊥ for variables not bound in Γ or mapped to ⊥ in ᾱ.

We also need a variant Tα(Γ, e) that, given bindings Γ,
an expression e and an arity α, reports the calls on dom Γ
performed by e and Γ with these bindings in scope.

We can now identify conditions on T that allow us to
satisfy the specifications in Definition 6.

Definition 9 (Tree cardinality analysis specification) We ex-
pect the cardinality analysis to agree with the arity analysis
on what variables are called at all:

dom Tα(e) = domAα(e) (T-dom)
dom Tα(Γ, e) = domAα(Γ, e) (Th-dom)

Inequalities for the syntactic constructs:

x∗ ⊗ Tα+1(e) v Tα(e x) (T-App)
(Tα−1(e)) \ {x} v Tα(λx. e) (T-Lam)
Tα(e[y := x]) v x∗ ⊗ (Tα(e)) \ {y} (T-subst)

x v Tα(x) (T-Var)
T0(e)⊗ (Tα(et)⊕ Tα(ef )) v Tα(e ? et : ef ) (T-If)

(sthunks Γ (TAα(Γ,e)(Γ)) (Tα(e))) \ dom Γ v Tα(let Γ in e)

(T-Let)

For values analyzed without arguments, the analysis is ex-
pected to return a repeatable tree:

isVal(e) =⇒ T0(e) is repeatable (T-value)

The specification for Aα(Γ, e) is closely related to (T-Let):

(sthunks Γ (TAα(Γ,e)(Γ)) (Tα(e)))
∣∣
dom Γ v Tα(Γ, e) (Th-s)

And finally, the connection to the arity analysis:

x ∈ thunks Γ, c(Tα(Γ, e)) x = ∞ =⇒ (Aα(Γ, e)) x = 0
(Th-∞-thunk)

2

Safety If we have a tree cardinality analysis, we can define
a cardinality analysis in the sense of the previous section. The
definition for Cα(Γ, e) is straight forward:

Cα(Γ, e) := c(Tα(Γ, e)).

In order to define C(ᾱ,α,α̇)((Γ, e, S)) we need to fold the tree
cardinality analysis over the stack:

Ṫ_([]) := ⊥
Ṫα·α̇((et : ef )·S) := Ṫα̇(S)⊗ (Tα(et)⊕ Tα(ef ))

Ṫα̇($x·S) := Ṫα̇(S)⊗ x∗

Ṫα̇(#x·S) := Ṫα̇(S).

With this we can define

C(ᾱ,α,α̇)((Γ, e, S)) := c
(
sthunks Γ (Tᾱ(Γ)) (Tα(e)⊗ Ṫα̇(S))

)
,

and set out to prove
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Lemma 4 Given a tree cardinality analysis satisfying Definition 9,
together with an arity analysis satisfying Definition 2, the derived
cardinality analysis satisfies Definition 6. 2

PROOF The conditions (C-dom) and (Ch-dom) follow directly
from (T-dom) and (Th-dom) with (A-dom) and (Ah-dom).

The conditions (C-cong), (C-not-called) and (C-upd) follow
directly from the definitions of T and Ṫ

We have x∗ v Ṫα̇(S) for $x ∈ S, so (C-args) follows
from [x 7→ ∞] = c(x∗) v c(Ṫα̇(S)) v (C(ᾱ,α,α̇)((Γ, e, S))).
Similar calculations prove (C-call) using (T-Var), (C-App)
using (T-App), (C-Lam) using (T-subst) and (T-Lam), (C-If1)
using (T-If).

Condition (C-If2) is where the precision comes from, as
we retain the knowledge that two code paths are mutually
exclusive. The proof is a direct consequence of t v t⊕ t′.

The variable cases are interesting, as these interact with
the heap, and hence with the s function.

We first show that (C-Var′1) is fulfilled. Abbreviate T :=
thunks Γ and note that x /∈ T. We have

C(ᾱ,ᾱ x,α̇)((Γ, e, #x·S))
= c
(
sT (Tᾱ(Γ)) (Tᾱ x(e)⊗ Ṫα̇(S))

)
= c
(
sT (Tᾱ(Γ)) (next x x⊗ Tᾱ x(e)⊗ Ṫα̇(S))

)
{ as next x x = • }

v c
(
sT (Tᾱ(Γ)) (next x (x⊗ Ṫα̇(S)))⊗ Tᾱ x(e))

)
{ using (next x t)⊗ t′ v next x (t⊗ t′) }

= c
(
next x (sT (Tᾱ(Γ)) (x⊗ Ṫα̇(S)))

)
{ by the definition of s }

v c
(
sT (Tᾱ(Γ)) (x⊗ Ṫα̇(S))

)
− x

v c
(
sT (Tᾱ(Γ)) (Tα(x)⊗ Ṫα̇(S))

)
− x { by (T-Var) }

= C(ᾱ,α,α̇)((Γ, x, S))− x.

Condition (C-Var1) represents the evaluation of a thunk.
The proof is analog, using Tᾱ(Γ)[x 7→ •] = Tᾱ(Γ′) in the step
where the definition of s is unfolded.

For (C-Var2) abbreviate T := thunks Γ = thunks(Γ[x 7→
e]). We know isVal(e), so T0(e) is repeatable, by (T-value).
If a repeatable tree t is already contained in the second
argument to s, then we can remove it from the range of the
first argument:

sT (t̄[x 7→ t]) (t⊗ t′) = sT t̄ (t⊗ t′)

Altogether, we show

C(ᾱ,0,α̇)((Γ[x 7→ e], e, S))

= c
(
sT (Tᾱ(Γ[x 7→ e])) (T0(e)⊗ Ṫα̇(S))

)
= c
(
sT (Tᾱ(Γ)[x 7→ Tᾱ x(e)]) (T0(e)⊗ Ṫα̇(S))

)
v c
(
sT (Tᾱ(Γ)[x 7→ T0(e)]) (T0(e)⊗ Ṫα̇(S))

)
= c
(
sT (Tᾱ(Γ)) (T0(e)⊗ Ṫα̇(S))

)
{ by T0(e) repeatable }

= C(ᾱ,0,α̇)((Γ, e, #x·S)).

Proving condition (C-Let) is for the most part a tedious
calculation involving freshness of variables. We use that if
the domain of t̄′ is disjoint from the variables occurring in t̄
(i.e. ∀y. ∀x ∈ t̄ y. t̄′ x = •), then

sT (t̄ t t̄′) t = sT t̄ (sT t̄′ t).

Abbreviating T := thunks Γ and T′ := thunks∆, we show:

C(Aα(∆,e)tᾱ,α,α̇)((∆ · Γ, e, S))

= c
(
sT∪T′ (TAα(∆,e)tᾱ(Γ · ∆)) (Tα(e)⊗ Ṫα̇(S))

)
= c
(
sT∪T′ (Tᾱ(Γ)) (sT∪T′ (TAα(∆,e)(∆)) (Tα(e)⊗ Ṫα̇(S)))

)
{ by the above equation }

= c
(
sT (Tᾱ(Γ)) (sT′ (TAα(∆,e)(∆)) (Tα(e)⊗ Ṫα̇(S)))

)
= c
(
sT (Tᾱ(Γ)) (sT′ (TAα(∆,e)(∆)) (Tα(e))⊗ Ṫα̇(S))

)
{ as dom∆ is fresh with regard to S }

= c
(
sT (Tᾱ(Γ)) (sT′ (TAα(∆,e)(∆)) (Tα(e))⊗ Ṫα̇(S))

)∣∣
dom∆t

c
(
sT (Tᾱ(Γ)) (sT′ (TAα(∆,e)(∆)) (Tα(e))⊗ Ṫα̇(S))

)
\ dom∆

= c
(
sT′ (TAα(∆,e)(∆)) (Tα(e))

∣∣
dom∆

)
t

c
(
sT (Tᾱ(Γ)) (sT′ (TAα(∆,e)(∆)) (Tα(e)) \ dom∆⊗ Ṫα̇(S))

)
v c
(
Tα(∆, e)

)
t c
(
sT (Tᾱ(Γ)) (Tα(let ∆ in e)⊗ Ṫα̇(S))

)
{ by (Th-s) and (T-Let) }

= Cα(∆, e) t C(ᾱ,α,α̇)((Γ, let ∆ in e, S)).

Finally, (Ah-∞-thunk) follows directly from (Th-∞-thunk).�

5.3 Co-Call cardinality analysis

The preceding section provides a framework for a cardinal-
ity analysis, but the infinite nature of the TTree data type
prevents an implementation on that level. For a real imple-
mentation, we need a practically implementable data type
that approximates the trees.

The data type Graph used in the implementation is an
undirected, non-transitive graph on the set of variables with
loops. The intuition is that only the nodes of G (denoted by
dom G) are called, and that an edge x—y ∈ G indicates that
x and y can be called together, while the absence of an edge
guarantees that calls to x resp. y are mutually exclusive.

Loops thus indicate whether a variable is going to be called
more than once: The graph x y allows at most one call to y
(possibly together with one call to x), while x y allows
any number of calls to y (but still at most one to x).

We specify graphs via their edge sets, e.g.

V ×V′ := {x—y | x ∈ V ∧ y ∈ V′ ∨ y ∈ V ∧ x ∈ V′}
for the Cartesian product of variable sets, and either specify
their node set separately (e.g. dom(V × V′) = domV ∪
domV′) or leave it implicit.

We write V2 := V ×V. The set of neighbors of a variable
is Nx(G) := {y | x—y ∈ G}. The graph G \V is G with nodes
in V removed, while G

∣∣
V is G with only nodes in V retained.

The graphs are ordered by inclusion, with ⊥ = {}.
We can convert a co-call graph to a TTree using the function

t : Graph→ TTree, defined via

paths(t(G))

:= {x1 · · · xn | ∀i. xi ∈ dom G ∧ ∀j 6= i. xi—xj ∈ G}.
We can also approximate a TTree by a Graph with the function
g : TTree→ Graph:

g(t) :=
⋃
{ġ(ẋ) | ẋ ∈ paths t}

using ġ : [Var]→ Graph where dom ġ(x1 · · · xn) = {x1, . . . , xn}
and ġ(x1 · · · xn) := {xi—xj | i 6= j ≤ n}.

The mappings t and g form a monotone Galois connection:
g(t) v G ⇐⇒ t v t(G). It is even a Galois insertion, as
g(t(G)) = G.
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Specification We proceed in the usual scheme, by giving a
specification for a safe co-call cardinality analysis, connecting
it to the tree cardinality analysis, and eventually proving that
our implementation fulfills the specification.

A co-call cardinality analysis determines for each expres-
sion e and incoming arity α its co-call graph Gα(e). As be-
fore, we also require a variant that analyses bindings, written
Gα(Γ, e). The conditions in the following definition are obvi-
ously designed to connect to Definition 9.

Definition 10 (Co-call cardinality analysis specification) We
want the co-call graph analysis to agree with the arity analysis
on what is called at all:

domGα(e) = domAα(e) (G-dom)

As usual, we have inequalities for the syntactic constructs:

Gα+1(e) ∪ ({x} × fv(e x)) v Gα(e x) (G-App)
Gα−1(e) \ {x} v Gα(λx. e) (G-Lam)

Gα(e[y := x]) \ {x, y} v Gα(e) \ {x, y} (G-subst)
G0(e) ∪ Gα(et) ∪ Gα(ef )∪
(domA0(e)× (domAα(et) ∪ domAα(ef )))

v Gα(e ? et : ef ) (G-If)
Gα(Γ, e) \ dom Γ v Gα(let Γ in e) (G-Let)

isVal(e) =⇒ (fv e)2 v G0(e) (G-value)

The following conditions concern Gα(Γ, e), which has to cater
for the calls originating in e,

Gα(e) v Gα(Γ, e), (Gh-body)

the calls originating in bound values,

(x 7→ e′) ∈ Γ =⇒ GAα(Γ,e) x(e
′) v Gα(Γ, e), (Gh-heap)

and finally the extra edges between what is called from a
bound value and whatever the bound value is called with:

(x 7→ e′) ∈ Γ, isVal(e′) =⇒
(fv e′)× Nx(Ga(γ, e)) v Gα(Γ, e). (Gh-extra)

For thunks, we can be slightly more precise: Only one call to
them matters, so we can ignore a possible edge x—x:

(x 7→ e′) ∈ Γ, ¬ isVal(e′) =⇒
(fv e′)× (Nx(Ga(γ, e)) \ {x}) v Gα(Γ, e) (Gh-extra’)

Finally, we need to ensure that the cardinality analysis is
actually used by the arity analysis when dealing with thunks.
For recursive bindings, we never eta-expand thunks:

rec Γ, x ∈ thunks Γ, x ∈ domAα(Γ, e) =⇒
Aα(Γ, e) = 0 (Rec-∞-thunk)

But for a non-recursive thunk, we only have to worry about
thunks which are possibly called multiple times:

x /∈ fv e′, ¬ isVal(e′), x—x ∈ Gα(Γ, e) =⇒
Aα([x 7→ e′], e) = 0 (Nonrec-∞-thunk)

2

Safety From a co-call analysis fulfilling Definition 10 we can
derive a tree cardinality analysis fulfilling Definition 9, using

Tα(e) := t(Gα(e)).

The definition of Tα(Γ, e) differs for nonrecursive and recur-
sive bindings. For a non-recursive binding Γ = [x 7→ e′] we
have Tα(Γ, e) := t(Gα(e))

∣∣
dom Γ and for recursive Γ we define

Tα(Γ, e) := t((domAα(Γ, e))2), i.e. the bound variables may
call each other in any way.

Lemma 5 Given a co-call cardinality analysis satisfying Defini-
tion 10, together with an arity analysis satisfying Definition 2, the
derived cardinality analysis satisfies Definition 9. 2

PROOF Most conditions of Definition 9 follow by simple
calculation from their counterpart in Definition 10 using the
Galois connection

t v t(G) ⇐⇒ g(t) v G

and identities such as g(t⊕ t′) = g(t) ∪ g(t′) and g(t⊗ t′) =
g(t) ∪ g(t′) ∪ (dom t× dom t′).

For (T-Let), we use (G-Let) with the following lemma:

g(t) v G
∀x /∈ S. t̄ x = ⊥
∀x ∈ S. g(t̄ x) v G
∀x ∈ S, x /∈ T. dom(t̄ x)× Nx(G) v G
∀x ∈ S, x ∈ T. dom(t̄ x)× (Nx(G) \ {x}) v G

=⇒ g((sT t̄ t) \ S) v G,

which we instantiate with T = thunks Γ, t̄ = TAα(Γ,e)(Γ),
t = Tα(e) and S = dom Γ.

Condition (Th-s) is trivially true in the case of a re-
cursive binding. For a non-recursive Γ, it follows from
(sthunks Γ (TAα(Γ,e)(Γ)) (Tα(e)))

∣∣
dom Γ = Tα(e)

∣∣
dom Γ = Tα(Γ, e).

Finally, (Th-∞-thunk) is a direct consequence of (Rec-∞-
thunk) and (Nonrec-∞-thunk). �

5.4 Call Arity, concretely

At last we can give the complete and concrete co-call analysis
corresponding to GHC’s Call Arity, and establish its safety via
our chain of refinements, simply by checking the conditions
in Definition 10.

We first give the arity analysis:

Aα(x) := [x 7→ α]

Aα(e x) := Aα+1(e) t [x 7→ 0]
Aα(λx. e) := Aα−1(e) \ {x}

Aα(e ? et : ef ) := A0(e) tAα(et) tAα(ef )
Aα(Cb) := ⊥ for b ∈ {t, f}

The analysis of a let expression Aα(let Γ in e) as well as
the analysis of a binding Aα(Γ, e) are defined differently for
recursive and non-recursive bindings.

For a recursive Γ, we have Aα(let Γ in e) := ᾱ \ dom Γ and
Aα(Γ, e) := ᾱ

∣∣
dom Γ where ᾱ is the least fixed point defined by

the equation

ᾱ = Aᾱ(Γ) tAα(e) t [x 7→ 0 | x ∈ thunks Γ].

For a non-recursive binding Γ = [x 7→ e′] we have
Aα(let Γ in e) := (Aα′ (e′) t Aα(e)) \ dom Γ and Aα(Γ, e) :=
[x 7→ α′] where

α′ :=

{
0 if ¬ isVal(e′) and x—x ∈ Gα(e)
Aα(e) x otherwise.
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We have domGα(e) = domAα(e) and

Gα(x) := {}
Gα(e x) := Gα+1(e) ∪ ({x} × fv(e x))

G0(λx. e) := (fv e)2 \ {x}
Gα+1(λx. e) := Gα(e) \ {x}
Gα(e ? et : ef ) := G0(e) ∪ Gα(et) ∪ Gα(ef ) ∪

(domA0(e)× (domAα(et) ∪ domAα(ef )))
Gα(Cb) := {} for b ∈ {t, f}

Gα(let Γ in e) := Gα(Γ, e) \ dom Γ

The analysis result for bindings is different for recursive
and non-recursive bindings and uses the auxiliary function

Gᾱ;G(x 7→ e′) :=

{
(fv e′)2 if isVal(e′) ∧ x—x ∈ G
Gᾱ x(e′) otherwise,

which calculates the co-calls of an individual binding, adding
the extra edges between multiple invocations of a bound
value, unless it is a thunk and hence shared.

For recursive Γ we define Gα(Γ, e) as the least fixed point
fulfilling

Gα(Γ, e) = Gα(e) t
⊔

(x 7→e′)∈Γ

GAα(Γ,e);Gα(Γ,e)(x 7→ e′)

t
⊔

(x 7→e′)∈Γ

(fv e′ × Nx(Gα(Γ, e))).

For a non-recursive Γ = [x 7→ e′], we have

Gα(Γ, e) = Gα(e) t GAα(Γ,e);Gα(e)(x 7→ e′)

t
{
fv e′ × (Nx(Gα(e)) \ {x}) if ¬ isVal(e′)
fv e′ × Nx(Gα(e)) if isVal(e′).

Theorem 1 Call Arity is safe (in the sense of Definition 1).

PROOF By straightforward calculation (and simple induction
for (G-subst)), we can show that the analyses fulfill Defini-
tion 2 and Definition 10. So by Lemma 5, Lemma 4, Lemma 3
and Corollary 1, the analyses are safe. �

6. The formalization in Isabelle
On their own, the proofs presented in the previous sections are
not very interesting, as they are neither very elegant nor very
innovative. What sets them apart from similar work is that
these proofs have been carried out in the interactive theorem
prover Isabelle [16]. This provides a level of assurance that is
hard to reach using pen-and-paper-proofs.

But it also greatly increases the effort involved in obtaining
a result like Theorem 1. The Isabelle development correspond-
ing to this paper, including the definition of the syntax and
the semantics, contains roughly 12,000 lines of code with 1,200
lemmas (many small, some large) in 75 theories, created over
the course of 9 months [3]. Large parts of it, however, can be
re-used for other developments: The syntax and semantics,
of course, but also the newly created data types like the trace
trees and the co-call graphs.

Much of the complexity is owed to the problem of bind-
ings. Using Nominal logic ([20], implemented for Isabelle in
Christian Urban’s Nominal2 package) helped a lot here, but
still incurs technical overhead, as all involved definitions have
to be proven equivariant, i.e. oblivious to variable renaming.
While usually simple to prove, these still have to be stated.

Another cause of overhead is ensuring that all analyses and
the operators used by them are monotone and continuous, so
that the fixed points used are actually well-defined. Here,
the HOLCF package by Brian Huffman [10] is used with
good results, but again not without an extra cost compared to
handwaving over such issues in pen-and-paper proofs.

So while the actual result shown here might not have
warranted that effort on its own – after all, performance
regressions due to bugs in the Call Arity analysis do not
have very serious consequences – it lays ground towards
formalizing more and more parts of the core data structures
and algorithms in our compilers.

The separation into individual theories (Isabelle’s equiv-
alent to Haskell’s modules) as well as the use of locales ([1],
Isabelle’s approximation to a module system) helps to gain
insight into the structure of an otherwise very large proof, by
ensuring a separation of concerns. For example, the proof of
JT0(e)K = JeK has only the conditions from Definition 2 avail-
able, which shows that the cardinality analysis is irrelevant
for functional correctness.

Another benefit of having a machine-checked proof is that
one can be a bit more liberal in the write-up for human
consumption, i.e. this paper, and skip over uninteresting
technical details with a much better conscience, knowing there
really is nothing lurking in the skipped parts. We hope that
this made the paper a bit more pleasant to read than if it were
completely rigorous.

6.1 The formalization gap

Every formalization has a formalization gap, i.e. a difference
to the formalized artifact that is not (and often cannot) be
machine-checked. Despite the effort that went into this for-
malization, the gap is not very narrow:

• Clearly, we have not formalized the algorithm as imple-
mented in GHC, but rather a mathematical description of
it. Haskell code has no primitive function yielding a least
fixed point, but has to find it using fixed-point iteration.
Termination of the algorithm is not covered here.

• Our syntax is a much restricted variant of GHC’s interme-
diate language Core. The latter is said to be simple, having
just 15 constructors, but that is still a sizable chunk for a
machine-checked formalization, and involves user-defined
data types and arbitrary expressions as arguments to an
application. Our meta-argument is that, for this particular
theorem, our smaller syntax is representative.

• GHC’s Core is typed, while we work in an untyped setting.
As the analysis in GHC ignores the types, we argue that
this is warranted, but again, this leaves a small gap.

• In GHC, terms are part of modules and packages; this
complexity is completely ignored here. The real implemen-
tation will, for example, not report arity information for
external identifiers, as they cannot be used anyway. This
implementation short-cut is ignored here.

• There is no official semantics of GHC Core that is precise
enough to observe sharing. The closest thing is Richard
Eisenberg’s work on formalizing Core [7], which includes
a small step operational semantics for all of Core, but with
call-by-name semantics. So the only “real” specification
would be GHC’s implementation, including all later stages
and the runtime system, which is not a usable definition.

• Finally, our formal notion of performance is, at best, an
approximation for real performance. Formally capturing
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the actual runtime of a program on modern hardware with
multiple cores and complex caches is currently impossible.

7. Related work
This work connects arity and cardinality analyses with opera-
tional safety properties, using an interactive theorem prover;
as such this is a first.

However, this is not the first compiler transformation
proven correct in an interactive theorem prover. After all there
is CompCert (e.g. [12]), a complete verified optimizing com-
piler for C implemented in Coq. Furthermore, a verified Java
to Java bytecode compiler [13] was written using Isabelle’s
code generation facilities. Their theorems cover functional
correctness of the compilers, though, but not performance.

In the realm of functional programming languages, a
number of formal treatments of compiler transformations
exist, e.g. verification of the CPS transformation in Coq (e.g.
[5], [6]), Twelf (e.g. [19]) or Isabelle (e.g. [15]). As their focus
lies on finding proper techniques for handling naming, their
semantics do not express heap usage and sharing.

Narrowing it down to treatments of functional programs
with lazy evaluation which focus on program transformations
and their effect on performance, there is Sands’ improvement
theory (e.g. [9]), which aims to provide a foundation for prov-
ing transformations safe with regard to operational properties.
His notion of strong improvement is similar to our notion of
safety, but quantifies over all contexts. As such, it is more
suited for analyzing local transformations than context-aware
analyses like Call Arity.

Related to the Call Arity analysis are the GHC’s “regular”
arity analysis, which is described in working notes by Xu and
Peyton Jones [21], and its cardinality analysis, most recently
described in [17]. See [4] for a discussion of their relation to
Call Arity.

8. Conclusion
First and foremost, we have proven that Call Arity is a safe
transformation.

That was initially not the case: Only when we worked
towards a formally precise understanding of Call Arity we
uncovered a bug in the implementation, where thunks would
erroneously be eta-expand when they are part of a linearly
recursive binding.1 So the work was useful. But that alone
does not warrant the effort put into this work – the bug would
have been spotted by someone eventually, and no airplane
control program relies on the safety of this the analysis (we
hope).

What made this work worth it is the scarcity of formal treat-
ments of the performance effects of compiler transformations,
so it is an additional data point to answer the question “How
practical is it, yet?”. Our answer here is, yes, it is possible, but
still too tedious.

We have created reusable artifacts – syntax, semantics, data
structures – that make similar endeavors, e.g. a safety proof
of the cardinality analysis described in [17], more tractable.

It would be desirable to narrow the formalization gap
and formalize GHC’s Core in Isabelle. Using Isabelle’s code
generation to Haskell, even verified implementations of Core-
to-Core transformations in GHC appear possible. This would
be a milestone on the way to formally verified compilation of
Real-World-Haskell.

1 see GHC commit 306d255
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